Representation, homophily, and polarization in the U.S. House of Representatives in the Twitter era

Document
Description

By collecting and analyzing more than two million tweets, U.S. House Representatives’ voting records in 111th and 113th Congress, and data from other resources I study several aspects of adoption

By collecting and analyzing more than two million tweets, U.S. House Representatives’ voting records in 111th and 113th Congress, and data from other resources I study several aspects of adoption and use of Twitter by Representatives. In the first chapter, I study the overall impact of Twitter use by Representatives on their political orientation and their political alignment with their constituents. The findings show that Representatives who adopted Twitter moved closer to their constituents in terms of political orientation.

By using supervised machine learning and text mining techniques, I shift the focus to synthesizing the actual content shared by Representatives on Twitter to evaluate their effects on Representatives’ political polarization in the second chapter. I found support for the effects of repeated expressions and peer influence in Representatives’ political polarization.

Last but not least, by employing a recently developed dynamic network model (separable temporal exponential-family random graph model), I study the effects of homophily on formation and dissolution of Representatives’ Twitter communications in the third chapter. The results signal the presence of demographic homophily and value homophily in Representatives’ Twitter communications networks.

These three studies altogether provide a comprehensive picture about the overall consequences and dynamics of use of online social networking platforms by Representatives.