Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Molecular models for conductance in junctions and electrochemical electron transfer
  5. Full metadata

Molecular models for conductance in junctions and electrochemical electron transfer

Full metadata

Description

This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes.

First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon’s tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer.

Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed.

Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of several intermediates in the catalytic cycle of a model NiFe complex, a hypothetical reaction mechanism, which very well agrees with the observed experimental results, is proffered.

Future work related to this thesis may involve the systematic analysis of chemical reactivity in constrained geometries, a subject of importance if the context of enzymatic activity. Another, more intriguing direction is related to the fundamental issue of reformulating Marcus theory in terms of the molecular dielectric response function.

Date Created
2015
Contributors
  • Khezr Seddigh Mazinani, Shobeir (Author)
  • Mujica, Vladimiro (Thesis advisor)
  • Pilarisetty, Tarakeshwar (Committee member)
  • Angell, Charles A (Committee member)
  • Jones, Anne K (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Chemistry
  • quantum physics
  • Nanoscience
  • Catalysis
  • Conductance
  • Descriptor
  • Electron transfer
  • electron transport
  • Polarizability
  • electron transport
  • Charge exchange
  • electrochemistry
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
xv, 120 pages : illustrations (mostly color)
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.36472
Statement of Responsibility
by Shobeir Khezr Seddigh Mazinani
Description Source
Retrieved on April 14, 2016
Level of coding
full
Note
Partial requirement for: Ph.D., Arizona State University, 2015
Note type
thesis
Includes bibliographical references (pages 93-111)
Note type
bibliography
Field of study: Chemistry
System Created
  • 2016-02-01 07:06:34
System Modified
  • 2021-08-30 01:25:36
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information