Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. New passive methodology for power cable monitoring and fault location
  5. Full metadata

New passive methodology for power cable monitoring and fault location

Full metadata

Description

The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis and temperature monitoring system are described including their intrinsic limitations for cable health assessment. Power cable fault location methods are reviewed with two main categories: off-line and on-line data based methods.

As a diagnostic and fault location approach, a new passive methodology is introduced. This methodology is based on analyzing the resonant frequencies of the transfer function between the input and output of the power cable system. The equivalent pi model is applied to the resonant frequency calculation for the selected underground power cable transmission system.

The characteristics of the resonant frequencies are studied by analytical derivations and PSCAD simulations. It is found that the variation of load magnitudes and change of positive power factors (i.e., inductive loads) do not affect resonant frequencies significantly, but there is considerable movement of resonant frequencies under change of negative power factors (i.e., capacitive loads).

Power cable fault conditions introduce new resonant frequencies in accordance with fault positions. Similar behaviors of the resonant frequencies are shown in a transformer (TR) connected power cable system with frequency shifts caused by the TR impedance.

The resonant frequencies can be extracted by frequency analysis of power signals and the inherent noise in these signals plays a key role to measure the resonant frequencies. Window functions provide an effective tool for improving resonant frequency discernment. The frequency analysis is implemented on noise laden PSCAD simulation signals and it reveals identical resonant frequency characteristics with theoretical studies.

Finally, the noise levels of real voltage and current signals, which are acquired from an operating power plant, are estimated and the resonant frequencies are extracted by applying window functions, and these results prove that the resonant frequency can be used as an assessment for the internal changes in power cable parameters such as defects and faults.

Date Created
2015
Contributors
  • Kim, Youngdeug (Author)
  • Holbert, Keith Edwin (Thesis advisor)
  • Papandreou-Suppappola, Antonia (Committee member)
  • Heydt, Gerald (Committee member)
  • Karady, George G. (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Electrical Engineering
  • energy
  • Cable Diagnosis
  • Fault Location
  • frequency analysis
  • Power Cable
  • Resonant Frequency
  • Transfer functions
  • Electric cables--Fault location.
  • Electric cables--Monitoring.
  • Electric cables
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
xx, 160 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.34819
Statement of Responsibility
by Youngdeug Kim
Description Source
Viewed on September 8, 2015
Level of coding
full
Note
Partial requirement for: Ph. D., Arizona State University, 2015
Note type
thesis
Includes bibliographical references (pages 130-137)
Note type
bibliography
Field of study: Electrical engineering
System Created
  • 2015-08-17 11:52:04
System Modified
  • 2021-08-30 01:27:37
  •     
  • 1 year 6 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information