Description
Technological advances have enabled the generation and collection of various data from complex systems, thus, creating ample opportunity to integrate knowledge in many decision making applications. This dissertation introduces holistic learning as the integration of a comprehensive set of relationships

Technological advances have enabled the generation and collection of various data from complex systems, thus, creating ample opportunity to integrate knowledge in many decision making applications. This dissertation introduces holistic learning as the integration of a comprehensive set of relationships that are used towards the learning objective. The holistic view of the problem allows for richer learning from data and, thereby, improves decision making.

The first topic of this dissertation is the prediction of several target attributes using a common set of predictor attributes. In a holistic learning approach, the relationships between target attributes are embedded into the learning algorithm created in this dissertation. Specifically, a novel tree based ensemble that leverages the relationships between target attributes towards constructing a diverse, yet strong, model is proposed. The method is justified through its connection to existing methods and experimental evaluations on synthetic and real data.

The second topic pertains to monitoring complex systems that are modeled as networks. Such systems present a rich set of attributes and relationships for which holistic learning is important. In social networks, for example, in addition to friendship ties, various attributes concerning the users' gender, age, topic of messages, time of messages, etc. are collected. A restricted form of monitoring fails to take the relationships of multiple attributes into account, whereas the holistic view embeds such relationships in the monitoring methods. The focus is on the difficult task to detect a change that might only impact a small subset of the network and only occur in a sub-region of the high-dimensional space of the network attributes. One contribution is a monitoring algorithm based on a network statistical model. Another contribution is a transactional model that transforms the task into an expedient structure for machine learning, along with a generalizable algorithm to monitor the attributed network. A learning step in this algorithm adapts to changes that may only be local to sub-regions (with a broader potential for other learning tasks). Diagnostic tools to interpret the change are provided. This robust, generalizable, holistic monitoring method is elaborated on synthetic and real networks.
Reuse Permissions
  • Downloads
    pdf (897.1 KB)

    Details

    Title
    • Holistic learning for multi-target and network monitoring problems
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2014
      Note type
      thesis
    • Includes bibliographical references (p. 118-123)
      Note type
      bibliography
    • Field of study: Industrial engineering

    Citation and reuse

    Statement of Responsibility

    by Bahareh Azarnoush

    Machine-readable links