Photophysics of bio-inspired solar energy conversion

Document
Description
Increased global demand for energy has led to prolific use of fossil fuels, which produce and release greenhouse gases, such as carbon dioxide. This increase in atmospheric carbon dioxide affects the global weather system and has been cited as a

Increased global demand for energy has led to prolific use of fossil fuels, which produce and release greenhouse gases, such as carbon dioxide. This increase in atmospheric carbon dioxide affects the global weather system and has been cited as a cause for global warming. For humans to continue to meet demands for energy while reducing greenhouse emission, a sustainable, carbon-neutral energy source must be developed. The sun provides energy for the majority of life on earth, as well as the energy stored in the chemical bonds of fossil fuels. This dissertation investigates systems inspired by the biological mechanism of solar energy capture and storage. In natural photosynthesis, organisms use chlorophyll as a chromophore to absorb the sun's energy. Bio-inspired systems use close analogues like porphyrins and phthalocyanines. In this dissertation, a soluble, semiconducting porphyrin is reported. The polymer was synthesized via a Buchwald-Hartwig style coupling of porphyrin monomers which produced a polyaniline-like chain with porphyrins incorporated into the backbone. Spectroscopic and electrochemical studies were performed, which show evidence of excited state charge transfer and a first oxidation state of 0.58 V (vs SCE). These properties suggest that the polymer could be involved in excited state electron donation to fullerenes and other electron acceptors, which could be beneficial in organic photovoltaics, sensors, and other applications. Molecular dyads and triads capable of charge separation have been studied for decades, and the spectroscopic properties of two novel systems are reported in this dissertation. A peripherally-connected zinc-phthalocyanine-C60 dyad was studied, and showed excited state electron transfer from the phthalocyanine excited state to the C60, with a long-lived charge separated state. An axially-linked carotene-Si-pthalocyanine-C60 triad was studied, showing excited state electron transfer from the phthalocyanine to the C60, but fast recombination before hole transfer can occur to the carotene. Analogues of the electron transport mechanisms used in many biological systems use iron-sulfur clusters to shuttle electrons from donors to acceptors. In this dissertation, the spectroscopic properties of a de novo protein were studied. Nanosecond transient absorption was used to characterize the electron and energy transfer of an excited water-soluble porphyrin to the oxidized [FeS] clusters incorporated in the de novo protein. The triplet state of the porphyrin was strongly quenched with the holo-protein without a rise in porphyrin plus signal, suggesting that only Dexter-type energy transfer occurs between the sensitized porphyrin and the [FeS] clusters.