Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Influence of grounded back electrode on AC creepage breakdown characteristics
  5. Full metadata

Influence of grounded back electrode on AC creepage breakdown characteristics

Full metadata

Description

This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of insulation which is adopted in many high voltage power devices. While most of the power equipment work under AC voltage, most of the research on back electrode is focused on the DC voltage. Therefore, it is necessary to deeply investigate the influence of the back electrode under AC applied voltage. To investigate the influence of back electrode, the research is separated into two phases, which are the experiment phase and the electric field analysis phase. In the experiments, the breakdown voltages for both with and without back electrode are obtained. The experimental results indicate that the grounded back electrode does have impact on the breakdown characteristics. Then with the breakdown voltage, based on real experiment model, the electric field is analyzed using computer software. From the field simulation result, it is found that the back electrode also influences the electric field distribution. The inter relationship between the electric field and breakdown voltage is the key to explain all the results and phenomena observed during the experiment. Additionally, the influence of insulation barrier on breakdown is also investigated. Compared to the case without ground electrode, inserting a barrier into the gap can more significantly improve breakdown voltage.

Date Created
2014
Contributors
  • Liu, Jiajun (Author)
  • Karady, George G. (Thesis advisor)
  • Ayyanar, Raja (Committee member)
  • Holbert, Keith E. (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Electrical Engineering
  • back electrode
  • creepage breakdown
  • Electric Fields
  • insulation barrier
  • partial discharge
  • solid insulation
  • Breakdown voltage
  • Electric insulators and insulation
  • Electric Fields
Resource Type
Text
Genre
Masters Thesis
Academic theses
Extent
xiv, 122 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.24833
Statement of Responsibility
by Jiajun Liu
Description Source
Viewed on July 2, 2014
Level of coding
full
Note
Partial requirement for: M.S., Arizona State University, 2014
Note type
thesis
Field of study: Electrical engineering
System Created
  • 2014-06-09 02:07:52
System Modified
  • 2021-08-30 01:35:50
  •     
  • 10 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM Dataverse
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-two Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. #1 ASU, #2 Stanford, #3 MIT. - U.S. News and World Report, 5 years, 2016-2020
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency