Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. 1-dimensional zinc oxide nanomaterial growth and solar cell applications
  5. Full metadata

1-dimensional zinc oxide nanomaterial growth and solar cell applications


One-dimensional zinc oxide nanomaterial growth and solar cell applications

Full metadata

Description

Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as indium, gallium and aluminum. The solubility of those dopant elements in ZnO is still debatable; but, it is necessary to find alternative conducting materials when their form is film or nanostructure for display devices. This is a consequence of the ever increasing price of indium. In addition, a new generation solar cell (nanostructured or hybrid photovoltaics) requires compatible materials which are capable of free standing on substrates without seed or buffer layers and have the ability introduce electrons or holes pathway without blocking towards electrodes. The nanostructures for solar cells using inorganic materials such as silicon (Si), titanium oxide (TiO2), and ZnO have been an interesting topic for research in solar cell community in order to overcome the limitation of efficiency for organic solar cells. This dissertation is a study of the rational solution-based synthesis of 1-dimentional ZnO nanomaterial and its solar cell applications. These results have implications in cost effective and uniform nanomanufacturing for the next generation solar cells application by controlling growth condition and by doping transition metal element in solution.

Date Created
2012
Contributors
  • Choi, Hyung Woo (Author)
  • Alford, Terry L. (Thesis advisor)
  • Krause, Stephen (Committee member)
  • Theodore, N. David (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Materials Science
  • engineering
  • energy
  • Nanomaterial
  • Nucleation and growth
  • photovoltaics
  • Solar Cells
  • Yttrium
  • Zinc Oxide
  • Nanostructured materials
  • Solar Cells
  • Zinc oxide thin films--Growth.
  • Zinc oxide thin films
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
xi, 120 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.15867
Statement of Responsibility
by Hyung Woo Choi
Description Source
Retrieved on Sept. 25, 2013
Level of coding
full
Note
Partial requirement for: Ph.D., Arizona State University, 2012
Note type
thesis
Includes bibliographical references (p. 113-120)
Note type
bibliography
Field of study: Materials science and engineering
System Created
  • 2013-01-17 06:35:19
System Modified
  • 2021-08-30 01:44:25
  •     
  • 1 year 6 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information