Color evolution of Kaede-type red fluorescent proteins

Description
The green fluorescent protein (GFP)-like fluorescent proteins play an important role for the color of reef-building corals. Different colors of extant coral fluorescent proteins (FPs) have evolved from a green ancestral protein. Interestingly, green-to-red photoconversion FPs (Kaede-type Red FPs) are

The green fluorescent protein (GFP)-like fluorescent proteins play an important role for the color of reef-building corals. Different colors of extant coral fluorescent proteins (FPs) have evolved from a green ancestral protein. Interestingly, green-to-red photoconversion FPs (Kaede-type Red FPs) are only found in clade D from Scleractinia (Faviina suborder). Therefore, I focus on the evolution of Kaede-type FPs from Faviina suborder ancestral FP. A total of 13 mutations have been identified previously that recapitulate the evolution of Kaede-type red FPs from the ancestral green FP. To examine the effect of each mutation, total ten reconstructed FPs were analyzed and six x-ray crystal structures were solved. These substitutions created a more hydrophilic environment around the carbonyl group of Phe61. Also, they increased the flexibility of the c-terminal chain, which keeps it from interacting with the entrance of the putative solvent channel. The photoconversion reaction shows a twophase kinetics. After the rapid initial phase, the overall reaction followed the firstorder kinetics. Based on the crystal structure analysis, I propose a new mechanism for Kaede-type FP photoconversion process, which a proton transfers via Gln38 to the carbonyl group of Phe61.

Details

Contributors
Date Created
2012
Resource Type
Language
  • eng
Note
  • thesis
    Partial requirement for: Ph.D., Arizona State University, 2012
  • bibliography
    Includes bibliographical references (p. 108-118)
  • Field of study: Chemistry

Citation and reuse

Statement of Responsibility
by Hanseong Kim

Additional Information

English
Extent
  • ix, 118 p. : ill. (chiefly col.)
Open Access
Peer-reviewed