DSL for Spatio-Temporal Perception Logic Specifications

Description

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment and identification of objects. The challenge posed in perception systems involves verifying the accuracy and rigidity of detections. The use of Spatio-Temporal Perception Logic (STPL) enables the user to express requirements for the perception system to verify, validate, and ensure its behavior; however, a drawback to STPL involves its accessibility. It is limited to individuals with an expert or higher-level knowledge of temporal and spatial logics, and the formal-written requirements become quite verbose with more restrictions imposed. In this thesis, I propose a domain-specific language (DSL) catered to Spatio-Temporal Perception Logic to enable non-expert users the ability to capture requirements for perception subsystems while reducing the necessity to have an experienced background in said logic. The domain-specific language for the Spatio-Temporal Perception Logic is built upon the formal language with two abstractions. The main abstraction captures simple programming statements that are translated to a lower-level STPL expression accepted by the testing monitor. The STPL DSL provides a seamless interface to writing formal expressions while maintaining the power and expressiveness of STPL. These translated equivalent expressions are capable of directing a standard for perception systems to ensure the safety and reduce the risks involved in ill-formed detections.

Downloads

One or more components are restricted to ASU affiliates. Please sign in to view the rest.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Contributors
Date Created
2021-05
Embargo Release Date
Resource Type
Language
  • eng

Additional Information

English
Series
  • Academic Year 2020-2021
Extent
  • 85 pages