137526-Thumbnail Image.png
Description
This thesis conducts research into the emissions from ocean going vessels and the ports that they dock at and current methods that are being pursued to help reduce the environmental impact of the ocean shipping industry. The main emissions from

This thesis conducts research into the emissions from ocean going vessels and the ports that they dock at and current methods that are being pursued to help reduce the environmental impact of the ocean shipping industry. The main emissions from the industry analyzed are particulate matter, oxides of nitrogen, oxides of sulfur and greenhouse gases. One method of reducing the environmental impact of the industry is through the improvement of the vessels. The vessels are currently being improved through the exploration of using liquefied natural gas (LNG) instead of bunker fuel. It has been found that LNG takes up less space, costs less, and has fewer emissions compared to bunker fuel, making it an ideal replacement as a fuel source. In addition to changing fuel sources, the International Maritime Organization (IMO) has created emission control areas around the United States and its territories mandating the use of ultra-low sulfur diesel within a certain range of land. There are two emission control areas with one being for the United States, Canada, and the French Territories of North America and the other for Puerto Rico and the U.S. Virgin Islands. For the North American nations it is 200 nautical miles, while for Puerto Rico and the U.S. Virgin Islands it is 50 nautical miles. This is an external pressure encouraging current shipping companies to switch to LNG as a fuel source. A second method of reducing the environmental impact of the ocean shipping industry is to improve the ports. The ports are being improved by utilizing alternative maritime power, reducing the emissions of vehicles at the ports, and engaging all of the stakeholders of a port. Alternative maritime power (AMP) is the use of shore-side power sources to power the auxiliary engines of vessels while they are hotelling, at dock. AMP is also referred to as cold-ironing and is effective in reducing emissions from vessels because the auxiliary engines are powered by electricity as opposed to fuel. This is an expensive option to pursue because of the high investment costs, but the Carl Moyer Program provides analysis for the cost-effectiveness of projects to justify the high costs. The second facet of port improvements is decreasing the emissions from all vehicles at the ports. The Port of Los Angeles has gradually been phasing out trucks with old engines and even banning them from entering the port. Cargo handling equipment has seen similar restrictions to reduce emissions. Finally locomotives have seen requirements implemented causing them to improve their engines while implementing idling restriction technologies as well. These improvements have yielded tangible and effective results for the Port of Los Angeles. These initiatives have resulted in a decrease in emissions from the port since their inception in 2005 to 2011 (2011 being the last year that data is available). In that time frame diesel particulate matter has been reduced by 71% at 634 tons, NOx has been reduced by 51% at 8,392 tons and SOx has been reduced by 76% at a total of 4,038 tons. The final part of port improvements this paper looks into is the integration and engagement of all stakeholders. The Port of Los Angeles has all but approved the Southern California International Gateway Project (SCIG) by Burlington Northern Santa Fe (BNSF) Railway. This project included the cooperation of BNSF, local unions, and local politicians to create a new rail yard that contains the highest sustainability standards for any rail yard. SCIG will employ numerous local people, require trucks to take alternative routes, reduce the amount of trucks on the highway, and help get products to consumers more competitively and efficiently. This will result in reduced emissions, decreased noise pollution, and less traffic congestion on Los Angeles highways. In conclusion it was found that real, effective, and cost-effective projects are being undertaken to improve the environmental impacts of the ocean shipping industry.
875.03 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Shifting Climate: The Ocean Shipping Industry's Efforts to Become More Sustainable
Contributors
Date Created
2013-05
Resource Type
  • Text
  • Machine-readable links