ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. In Vitro and In Silico Study of Hemodynamics In Vascular Models: Validating Computational Fluid Dynamics for Medical Application
  5. Full metadata

In Vitro and In Silico Study of Hemodynamics In Vascular Models: Validating Computational Fluid Dynamics for Medical Application

Full metadata

Title
In Vitro and In Silico Study of Hemodynamics In Vascular Models: Validating Computational Fluid Dynamics for Medical Application
Description
This study investigates the application of Computational Fluid Dynamics (CFD) to the medical field. An overview of recent advances in computational simulation and modeling in medical applications is provided, with a particular emphasis on CFD. This study attempts to validate CFD and demonstrate the possibility for applying CFD to the clinical treatment and evaluation of atherosclerotic disease. Three different geometric configurations are investigated: one idealized bifurcation with a primary diameter of 8 mm, and two different patient-specific models of the bifurcation from the common femoral artery to the superficial and deep femoral arteries. CFD is compared against experimental measurements of steady state and pulsatile flow acquired with Particle Image Velocimetry (PIV). Steady state and pulsatile flow rates that are consistent with those observed in the femoral artery are used. In addition, pulsatile CFD simulations are analyzed in order to demonstrate meaningful clinical applications for studying and evaluating the treatment of atherosclerotic disease. CFD was successfully validated for steady state flow, with an average percent error of 6.991%. Potential for validation was also demonstrated for pulsatile flow, but methodological errors warrant further investigation to reformulate methods and analyze results. Quantities frequently associated with atherosclerotic disease and arterial bifurcations, such as large variations in wall shear stress and the presence of recirculation zones are demonstrated from the pulsatile CFD simulations. Further study is required in order to evaluate whether or not such phenomena are represented by CFD accurately. Further study must also be performed in order to evaluate the practicality and utility of CFD for the evaluation of atherosclerotic disease treatment.
Date Created
2016-05
Contributors
  • Mortensen, Matthew James (Author)
  • VanAuker, Michael (Thesis director)
  • Frakes, David (Committee member)
  • Harrington Bioengineering Program (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • Cardiovascular Disease
  • Computational Fluid Dynamics
  • Atherosclerosis
  • Particle Image Velocimetry
Resource Type
Text
Extent
54 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2015-2016
Handle
https://hdl.handle.net/2286/R.I.37280
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-10-30 02:50:57
System Modified
  • 2021-08-11 04:09:57
  •     
  • 2 years 3 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP
Contact Us
Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Maps and Locations Jobs Directory Contact ASU My ASU
Repeatedly ranked #1 in innovation (ASU ahead of MIT and Stanford), sustainability (ASU ahead of Stanford and UC Berkeley), and global impact (ASU ahead of MIT and Penn State)
Copyright and Trademark Accessibility Privacy Terms of Use Emergency