Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Genetic diversity across the pseudoautosomal boundary varies across human populations
  5. Full metadata

Genetic diversity across the pseudoautosomal boundary varies across human populations

Full metadata

Description

Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal boundary between the PAR1 and non-PAR region is thought to have evolved from a Y-specific inversion that suppressed recombination across the boundary. In addition to the two PARs, there is also a human-specific X-transposed region (XTR) that was duplicated from the X to the Y chromosome. Genetic diversity is expected to be higher in recombining than nonrecombining regions, particularly because recombination reduces the effects of linked selection, allowing neutral variation to accumulate. We previously showed that diversity decreases linearly across the previously defined pseudoautosomal boundary (rather than drop suddenly at the boundary), suggesting that the pseudoautosomal boundary may not be as strict as previously thought. In this study, we analyzed data from 1271 genetic females to explore the extent to which the pseudoautosomal boundary varies among human populations (broadly, African, European, South Asian, East Asian, and the Americas). We found that, in all populations, genetic diversity was significantly higher in the PAR1 and XTR than in the non-PAR regions, and that diversity decreased linearly from the PAR1 to finally reach a non-PAR value well past the pseudoautosomal boundary in all populations. However, we also found that the location at which diversity changes from reflecting the higher PAR1 diversity to the lower nonPAR diversity varied by as much as 500 kb among populations. The lack of genetic evidence for a strict pseudoautosomal boundary and the variability in patterns of diversity across the pseudoautosomal boundary are consistent with two potential explanations: (1) the boundary itself may vary across populations, or (2) that population-specific demographic histories have shaped diversity across the pseudoautosomal boundary.

Date Created
2016-12
Contributors
  • Cotter, Daniel Juetten (Author)
  • Wilson Sayres, Melissa (Thesis director)
  • Stone, Anne (Committee member)
  • Webster, Timothy (Committee member)
  • School of Life Sciences (Contributor)
  • School of International Letters and Cultures (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • Human Genetics
  • Genetic Diversity
  • Sex Chromosomes
Resource Type
Text
Extent
22 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.40516
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-10-30 02:50:58
System Modified
  • 2021-08-11 04:09:57
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information