134801-Thumbnail Image.png
Description
The C6T single-chain variable fragment (scFv) is an antibody fragment designed as a potential Alzheimer’s therapeutic protein. However, this protein has been shown to be unstable and difficult to express in E. coli. In this project, the C6T scFv is

The C6T single-chain variable fragment (scFv) is an antibody fragment designed as a potential Alzheimer’s therapeutic protein. However, this protein has been shown to be unstable and difficult to express in E. coli. In this project, the C6T scFv is converted into an antigen-binding fragment (Fab), a larger and more stable antibody fragment. A C6T Fab sequence was derived from the scFv sequence, and a plasmid containing genes to express the Fab was constructed. Due to the disulfide-bonded structure of Fabs, the protein needs to be exported to the periplasm to properly fold. Therefore, the stII post-translational periplasmic secretion signal sequence was built into the expression vector, preceding both the heavy and light chain of the C6T Fab. The plasmid was transformed and expressed in BW25113 E. coli cells. A polyhistidine-tag was added to the Fab and it was purified on a nickel bead column. Protein characterization demonstrated that the correct Fab was produced.
Efforts were then made to optimize the expression of the C6T Fab in E. coli. Both the periplasmic secretion pathway and the effect of trigger factor were tested. Four expression systems were tested, consisting of one of two signal sequences (either DsbA directing through the SRP-dependent co-translational pathway or stII directing through the sec-dependent post-translational pathway) and one of two expression strains (BW25113 (tig+) containing trigger factor and KTD101 (Δtig) lacking trigger factor). Plasmids were constructed allowing the C6T Fab to be expressed and secreted using both pathways, and transformed into both strains. It was predicted that the protein expression could be optimized by employing the co-translational pathway in cells lacking trigger factor (i.e. the Δtig-DsbA expression system). However, this system severely decreased cell growth post-induction. It was found that both the lack of trigger factor and the employment of the co-translational pathway both significantly decrease cell growth post-induction. It is theorized that the increase in protein expression and secretion rate stresses the cell to a point where it is unable to maintain normal cell function and growth.
1008.83 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Optimizing the Expression of Therapeutic Antigen-Binding Fragments in E. coli
Contributors
Date Created
2016-12
Resource Type
  • Text
  • Machine-readable links