Life Cycle Assessment of Switchgrass Ethanol for Arizona

Document
Description

An increase in population and need to protect the planet has created many initiatives and research goals in developing alternatives methods of fueling. Federal and state policies have provided a

An increase in population and need to protect the planet has created many initiatives and research goals in developing alternatives methods of fueling. Federal and state policies have provided a push for industries to find ways to of reducing their impact on the environment while maintaining competitiveness. In the sector of alternative fuels, large policies such as the Renewable Fuel Standards (RFS) in the United States are making goals to reduce vehicular fuel from coal and oil, and focus on alternative fuels such as ethanol and biodiesel. Along with the RFS and other federal policies, states are introducing independent initiatives to promote the use of alternative fuels.

Research has shown that other crops besides corn can feasibly be used to produce ethanol for fuel use. One of the major crops of interest currently is switchgrass (Panicum Virgatum L.) because of its ability to grow under a variety of weather conditions and soil types. Switchgrass does not require as much maintenance as corn and is a perennial grass that can have high yielding fields for up to 9 years.

This report focuses on the impacts from using switchgrass-derived ethanol to meet the state of Arizona’s policy to have government fleet vehicles operating on alternative fuels. The study uses a life cycle assessment (LCA) approach to evaluate 22 million gallons of ethanol produced in Arizona and stored at fueling stations for use. Impacts in land use, global warming, and water quality are evaluated using software tools and databases in Ecoinvent and Simapro.

The results of the study indicate that the cultivation and harvest phase of the process will contribute the most to negative environmental impacts. According to the study, application of heavy nutrient fertilizer and the machinery needed for the additional agriculture have the potential to contribute over 36 million moles of hydrogen and 89 million CTU eq. to the air, soil, and water.