Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Alexa Discussion Board Skill
  5. Full metadata

Alexa Discussion Board Skill

Full metadata

Description

A common challenge faced by students is that they often have questions about course material that they cannot ask during lecture time. There are many ways for students to have these questions answered, such as office hours and online discussion boards. However, office hours may be at inconvenient times or locations, and online discussion boards are difficult to navigate and may be inactive. The purpose of this project was to create an Alexa skill that allows users to ask their Alexa-equipped device a question concerning their course material and to receive an answer retrieved from discussion board data. User questions are mapped to discussion board posts by use of the cosine similarity algorithm. In this algorithm, posts from the discussion board and the user’s question are converted into mathematical vectors, with each term in the vector corresponding to a word. The values of these terms are computed based on the word’s frequency within the vector’s corresponding document, the frequency of that word within all the documents, and the length of the document. After the question and candidate posts are converted into vectors, the algorithm determines the post most similar to the user’s question by computing the angle between the vectors. With the most similar discussion board post determined, the user receives the replies to the post, if any, as their answer. Users are able to indicate to their Alexa device whether they were satisfied by the answer, and if they were unsatisfied then they are given the opportunity to either rephrase their question or to have the question sent to a database of unanswered questions. The professor can view and answer the questions in this database on a website hosted by use of Amazon’s Simple Storage Service. The Alexa skill does well at answering questions that have already been asked in the discussion board. However, the skill depends heavily on the user’s word choice. Two questions that are semantically identical but different in phrasing are often given different answers. This is because the cosine algorithm measures similarity on the basis of word overlap, not semantic meaning, and thus the application never truly “understands” what type of answer the user desires. Improving the performance of this Alexa skill will require a more advanced question answering algorithm, but the limitations of Amazon Web Services as a development platform make implementing such an algorithm difficult. Nevertheless, this project has created the basis of a question answering Alexa skill by demonstrating a feasible way that the resources offered by Amazon can be utilized in order to build such an application.

Date Created
2019-05
Contributors
  • Baker, Matthew Elias (Author)
  • Chen, Yinong (Thesis director)
  • Balasooriya, Janaka (Committee member)
  • Historical, Philosophical & Religious Studies (Contributor)
  • Computer Science and Engineering Program (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • Computer Science
  • Amazon Web Services
  • Alexa
  • Question Answering
Resource Type
Text
Extent
18 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2018-2019
Handle
https://hdl.handle.net/2286/R.I.52383
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2019-04-11 12:00:14
System Modified
  • 2021-08-11 04:09:57
  •     
  • 1 year 7 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information