Description

A Study of the gasification of municipal solid waste (MSW) for hydrogen production was completed through research and statistical design of experiment. The study was done for general syngas production

A Study of the gasification of municipal solid waste (MSW) for hydrogen production was completed through research and statistical design of experiment. The study was done for general syngas production with conditions of high temperature and pressure. Waste samples from kitchen waste including rice, avocado, and egg shells were used. Dry orange blossom tree leaves were included and a very minimal fraction of used paper and Styrofoam. One of the components of the syngas predicted was hydrogen, but this study does not discuss techniques for the separation of the hydrogen from the syngas. A few suggestions, however, such as the use of gas chromatography and membranes are made for the study of the syngas and separation of the hydrogen from the syngas. A three level, three factors-half factorial design was used to analyze the impact of pressure, residence time and temperature on the gasification of MSW through a hydrothermal gasification approach. A series 4590 micro stirred reactor of 100mL was used to gasify MSW, but first, it was established through a TGA approach that the waste was about 5% moisture content and 55% organic content (OC). The TGA device used was the TG 209 F1 Libra. Results of the gasification indicated that the most important factor in the gasification of MSW is temperature, followed by residence time and that the syngas yield increases with a decreasing pressure of the system. A thermodynamic model relating the three factors and the syngas yield was developed.

Included in this item (3)



Machine-readable links