132362-Thumbnail Image.png
Description
In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask”

In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an electrophysiological perspective different than that of stimuli which don’t require full attention or exhibit impulsive multitasking responses. This study investigates the P3 component which has been experimentally proven to be associated with mental workload through information processing and cognitive function in visual and auditory tasks, where in the multitasking domain the greater attention elicited, the larger P3 waves are produced. This experiment compares the amplitude of the P3 component of individual stimulus presentation to that of multitasking trials, taking note of the brain workload. This study questions if the average wave amplitude in a multitasking ERP experiment will be the same as the grand average when performing the two tasks individually with respect to the P3 component. The hypothesis is that the P3 amplitude will be smaller in the multitasking trial than in the individual stimulus presentation, indicating that the brain is not actually concentrating on both tasks at once (sequential multitasking instead of concurrent) and that the brain is not focusing on each stimulus to the same degree when it was presented individually. Twenty undergraduate students at Barrett, the Honors College at Arizona State University (10 males and 10 females, with a mean age of 18.75 years, SD= 1.517) right handed, with normal or corrected visual acuity, English as first language, and no evidence of neurological compromise participated in the study. The experiment results revealed that one- hundred percent of participants undergo sequential multitasking in the presence of two demanding stimuli in the electrophysiological data, behavioral data, and subjective data. In this particular study, these findings indicate that the presence of additional demanding stimuli causes the workload of the brain to decrease as attention deviates in a bottleneck process to the multiple requisitions for focus, indicated by a reduced P3 voltage amplitude with the multitasking stimuli when compared to the independent. This study illustrates the feasible replication of P3 cognitive workload results for demanding stimuli, not only impulsive-response experiments, to suggest the brain’s tendency to undergo sequential multitasking when faced with multiple demanding stimuli. In brief, this study demonstrates that when higher cognitive processing is required to interpret and respond to the stimuli, the human brain results to sequential multitasking (task- switching, not concurrent multitasking) in the face of more challenging problems with each stimulus requiring a higher level of focus, workload, and attention.
8.7 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Multitasking, an EEG Experiment
Contributors
Date Created
2019-05
Resource Type
  • Text
  • Machine-readable links