131768-Thumbnail Image.png
Description
The aim of the present study was to review the symptoms and current treatment options of the most common skin infections seen in outpatient settings and develop a preliminary alternative treatment solution. The specific skin infections evaluated were those caused

The aim of the present study was to review the symptoms and current treatment options of the most common skin infections seen in outpatient settings and develop a preliminary alternative treatment solution. The specific skin infections evaluated were those caused by Staphylococcus and Streptococcus bacterial species, and are frequently treated with a wide variety of systemic antibiotics or topical ointments. Systemic antibiotics have shown increased occurrence of adverse side effects as well as the development of antibiotic-resistant bacteria. Additionally, these medications are usually overprescribed, which may further exacerbate negative side effects. Another issue that is addressed is the development of infections following treatment of a new laceration or other trauma to the skin. A patient may be treated for their wound with stitches or another alternative, but there is still the possibility of developing an infection later.
This study synthesizes information found from extensive research and provides a review of the most optimal techniques for developing an alternative to systemic antibiotics. The final deliverable is a report detailing the significant findings and discussing the ways that this solution may be developed further and implemented in a clinical setting. The solution is a hydrogel bandage designed to deliver antibiotics directly to the wound site, while also offering protection and enhanced wound healing. The target population is patients suffering from skin conditions in an outpatient setting. The antibiotics of interest for this solution are clindamycin, doxycycline, and trimethoprim-sulfamethoxazole (co-trimoxazole), as they offer excellent treatment against gram-positive bacteria and methicillin-resistant Staphylococcus aureus. However, other broad-spectrum antibiotics could potentially be incorporated to protect against gram-negative bacteria. The design features a polyvinyl alcohol (PVA) hydrogel that has shown many properties that are beneficial to biomedical applications, including biocompatibility, flexibility, high drug-loading capacity, high absorption of wound exudate, increased promotion of wound healing, and more. Preliminary mathematical models of the hydrogel’s drug delivery behaviors are also included. Due to the scope and timeframe of this project, the majority of findings herein are based on research of prior literature instead of development of the novel device. Future directions would include further research and development of the mechanisms behind the device, creation of a physical prototype, experimental testing, and statistical analyses to verify device specifications and capabilities.
1.05 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Targeted Delivery of Antibiotics to Skin Infections via Hydrogel Band-Aids to Reduce Adverse Side Effects: A Study
Contributors
Date Created
2020-05
Resource Type
  • Text
  • Machine-readable links