Description

In this paper, we study oscillating solutions of the 1D-quintic nonlinear Schrödinger equation with the help of Wigner's quasiprobability distribution in quantum phase space. An "absolute squeezing property", namely a

In this paper, we study oscillating solutions of the 1D-quintic nonlinear Schrödinger equation with the help of Wigner's quasiprobability distribution in quantum phase space. An "absolute squeezing property", namely a periodic in time total localization of wave packets at some finite spatial points without violation of the Heisenberg uncertainty principle, is analyzed in this nonlinear model.

application/pdf

Download count: 0

Details

Contributors
Date Created
  • 2013-08-15
Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1142/S0218863513500136
    • Identifier Type
      International standard serial number
      Identifier Value
      0218-8635
    • Identifier Type
      International standard serial number
      Identifier Value
      1793-6624
    Note

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    MAHALOV, A., & SUSLOV, S. K. (2013). Wigner function approach to oscillating solutions of the 1d-quintic nonlinear schrödinger equation. Journal of Nonlinear Optical Physics & Materials, 22(02), 1350013. doi:10.1142/S0218863513500136

    Machine-readable links