Description

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge [subscript 1− y] Sn [subscript y] i-layers spanning a broad compositional range below

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge [subscript 1− y] Sn [subscript y] i-layers spanning a broad compositional range below and above the crossover Sn concentration y [subscript c] where the Ge [subscript 1− y] Sn [subscript y] alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects.

application/pdf

Download count: 0

Details

Contributors
Date Created
  • 2015-03-02
Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1063/1.4913688
    • Identifier Type
      International standard serial number
      Identifier Value
      0003-6951
    • Identifier Type
      International standard serial number
      Identifier Value
      1077-3118
    Note
    • Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. along with the following message: The following article appeared in APPLIED PHYSICS LETTERS 106, 091103 (2015) and may be found at http://dx.doi.org/10.1063/1.4913688, opens in a new window

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Gallagher, J. D., Senaratne, C. L., Sims, P., Aoki, T., Menendez, J., & Kouvetakis, J. (2015). Electroluminescence from GeSn heterostructure pin diodes at the indirect to direct transition. APPLIED PHYSICS LETTERS, 106, 091103. http://dx.doi.org/10.1063/1.4913688

    Machine-readable links