Description

The conversion of alcohols towards aldehydes in the presence of catalysts by non-oxidative dehydrogenation requires special importance from the perspective of green chemistry. Sodium (Na) super ionic conductor (NASICON)-type hydrogen titanium phosphate sulfate (HTPS; H1-xTi2(PO4)3-x(SO4)x, x = 0.5–1) catalysts were

The conversion of alcohols towards aldehydes in the presence of catalysts by non-oxidative dehydrogenation requires special importance from the perspective of green chemistry. Sodium (Na) super ionic conductor (NASICON)-type hydrogen titanium phosphate sulfate (HTPS; H1-xTi2(PO4)3-x(SO4)x, x = 0.5–1) catalysts were synthesized by the sol-gel method, characterized by N2 gas sorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), NH3 temperature-programmed desorption (NH3-TPD), ultraviolet–visible (UV-VIS) spectroscopy, and their catalytic properties were studied for the non-oxidative dehydrogenation of methanol and ethanol. The ethanol is more reactive than methanol, with the conversion for ethanol exceeding 95% as compared to methanol, where the conversion has a maximum value at 55%. The selectivity to formaldehyde is almost 100% in methanol conversion, while the selectivity to acetaldehyde decreases from 56% to 43% in ethanol conversion, when the reaction temperature is increased from 250 to 400 °C.

Reuse Permissions
  • Downloads
    pdf (5.1 MB)

    Details

    Title
    • Highly Selective Solid Acid Catalyst H1−xTi2(PO4)3−x(SO4)x for Non-Oxidative Dehydrogenation of Methanol and Ethanol
    Contributors
    Date Created
    2017-03-22
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.3390/catal7030095
    • Identifier Type
      International standard serial number
      Identifier Value
      2073-4344

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Mitran, G., Mieritz, D., & Seo, D. (2017). Highly Selective Solid Acid Catalyst H1−xTi2(PO4)3−x(SO4)x for Non-Oxidative Dehydrogenation of Methanol and Ethanol. Catalysts, 7(3), 95. doi:10.3390/catal7030095

    Machine-readable links