Description

Measuring small molecule interactions with membrane proteins in single cells is critical for understanding many cellular processes and for screening drugs. However, developing such a capability has been a difficult

Measuring small molecule interactions with membrane proteins in single cells is critical for understanding many cellular processes and for screening drugs. However, developing such a capability has been a difficult challenge. We show that molecular interactions with membrane proteins induce a mechanical deformation in the cellular membrane, and real-time monitoring of the deformation with subnanometer resolution allows quantitative analysis of small molecule–membrane protein interaction kinetics in single cells.

Reuse Permissions
  • application/pdf

    Download count: 0

    Details

    Contributors
    Date Created
    • 2015-10-23
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1126/sciadv.1500633
    • Identifier Type
      International standard serial number
      Identifier Value
      2375-2548

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Guan, Y., Shan, X., Zhang, F., Wang, S., Chen, H., & Tao, N. (2015). Kinetics of small molecule interactions with membrane proteins in single cells measured with mechanical amplification. Science Advances, 1(9). doi:10.1126/sciadv.1500633

    Machine-readable links