A Hands-On Activity to Demonstrate the Central Dogma of Molecular Biology Via a Simulated VDJ Recombination Activity

Document
Description

Essential or enduring understandings are often defined as the underlying core concepts or “big ideas” we’d like our students to remember when much of the course content has been forgotten. The central dogma of molecular biology and how cellular information

Essential or enduring understandings are often defined as the underlying core concepts or “big ideas” we’d like our students to remember when much of the course content has been forgotten. The central dogma of molecular biology and how cellular information is stored, used, and conveyed is one of the essential understandings students should retain after a course or unit in molecular biology or genetics. An additional enduring understanding is the relationships between DNA sequence, RNA sequence, mRNA production and processing, and the resulting polypeptide/protein product. A final big idea in molecular biology is the relationship between DNA mutation and polypeptide change. To engage students in these essential understandings in a Genetics course, I have developed a hands-on activity to simulate VDJ recombination. Students use a foldable type activity to splice out regions of a mock kappa light chain gene to generate a DNA sequence for transcription and translation. Students fold the activity several different times in multiple ways to “recombine” and generate several different DNA sequences. They then are asked to construct the corresponding mRNA and polypeptide sequence of each “recombined” DNA sequence and reflect on the products in a write-to-learn activity.