This growing collection consists of scholarly works authored by ASU-affiliated faculty, students, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 12
Filtering by

Clear all filters

128159-Thumbnail Image.png

Urban Impacts on Oxidative Balance and Animal Signals

Description

Though many animal ornaments and signals are sensitive to and encode information about the oxidative balance (OB) of individuals (e.g., antioxidant supplies/activity, reactive oxygen species, cellular oxidative damage/repair), often the

Though many animal ornaments and signals are sensitive to and encode information about the oxidative balance (OB) of individuals (e.g., antioxidant supplies/activity, reactive oxygen species, cellular oxidative damage/repair), often the environmental and/or physiological sources of such OB are unknown. Urban development is among the most recent, pervasive, and persistent human stressors on the planet and impacts many environmental and physiological parameters of animals. Here we review the mechanistic underpinnings and functional consequences of how human urbanization drives antioxidant/oxidative status in animals and how this affects signal expression and use. Although we find that urbanization has strong negative effects on signal quality (e.g., visual, auditory, chemical) and OB across a range of taxa, few urban ecophysiological studies address signals and oxidative stress in unison, and even fewer in a fitness context. We also highlight particular signal types, taxa, life-histories, and anthropogenic environmental modifications on which future work integrating OB, signals, and urbanization could be centered. Last, we examine the conceptual and empirical framework behind the idea that urban conditions may disentangle signal expression from honesty and affect plasticity and adaptedness of sexually selected traits and preferences in the city.

Contributors

Agent

Created

Date Created
  • 2016-05-19

128799-Thumbnail Image.png

Parasites in the City: Degree of Urbanization Predicts Poxvirus and Coccidian Infections in House Finches (Haemorhous mexicanus)

Description

Background
Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date,

Background
Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations.
Methodology/Principal Findings
Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics.
Conclusion/Significance
These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional).

Contributors

Agent

Created

Date Created
  • 2014-02-04

128626-Thumbnail Image.png

Frequent misdirected courtship in a natural community of colorful Habronattus jumping spiders

Description

Male courtship display is common in many animals; in some cases, males engage in courtship indiscriminately, spending significant time and energy courting heterospecifics with whom they have no chance of

Male courtship display is common in many animals; in some cases, males engage in courtship indiscriminately, spending significant time and energy courting heterospecifics with whom they have no chance of mating or producing viable offspring. Due to high costs and few if any benefits, we might expect mechanisms to evolve to reduce such misdirected courtship (or ‘reproductive interference’). In Habronattus jumping spiders, males frequently court heterospecifics with whom they do not mate or hybridize; females are larger and are voracious predators, posing a severe risk to males who court indiscriminately. In this study, we examined patterns of misdirected courtship in a natural community of four sympatric Habronattus species (H. clypeatus, H. hallani, H. hirsutus, and H. pyrrithrix). We used direct field observations to weigh support for two hypotheses (differential microhabitat use and species recognition signaling) to explain how these species reduce the costs associated with misdirected courtship. We show that, while the four species of Habronattus do show some differences in microhabitat use, all four species still overlap substantially, and in three of the four species individuals equally encountered heterospecifics and conspecifics. Males courted females at every opportunity, regardless of species, and in some cases, this led to aggression and predation by the female. These results suggest that, while differences in microhabitat use might reduce misdirected courtship to some extent, co-existence of these four species may be possible due to complex communication (i.e. species-specific elements of a male’s courtship display). This study is the first to examine misdirected courtship in jumping spiders. Studies of misdirected courtship and its consequences in the field are limited and may broaden our understanding of how biodiversity is maintained within a community.

Contributors

Agent

Created

Date Created
  • 2017-04-05

128489-Thumbnail Image.png

Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

Description

Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λ[subscript max]) are evenly spaced across the light spectrum. In the course of avian evolution,

Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λ[subscript max]) are evenly spaced across the light spectrum. In the course of avian evolution, the λ[subscript max] of the most shortwave-sensitive cone, SWS1, has switched between violet (λ[subscript max] > 400 nm) and ultraviolet (λ[subscript max] < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

Contributors

Created

Date Created
  • 2016-07-12

129055-Thumbnail Image.png

The effects of sun exposure on carotenoid accumulation and oxidative stress in the retina of the House Finch (Haemorhous mexicanus)

Description

Background
Diet-derived carotenoid pigments are concentrated in the retinas of birds and serve a variety of functions, including photoprotection. In domesticated bird species (e.g., chickens and quail), retinal carotenoid pigmentation

Background
Diet-derived carotenoid pigments are concentrated in the retinas of birds and serve a variety of functions, including photoprotection. In domesticated bird species (e.g., chickens and quail), retinal carotenoid pigmentation has been shown to respond to large manipulations in light exposure and provide protection against photodamage. However, it is not known if or how wild birds respond to ecologically relevant variation in sun exposure.
Methods
We manipulated the duration of natural sunlight exposure and dietary carotenoid levels in wild-caught captive House Finches (Haemorhous mexicanus), then measured carotenoid accumulation and oxidative stress in the retina.
Results
We found no significant effects of sun exposure on retinal levels of carotenoids or lipid peroxidation, in replicate experiments, in winter (Jan–Mar) and spring/summer (May–June). Dietary carotenoid supplementation in the spring/summer experiment led to significantly higher retinal carotenoid levels, but did not affect lipid peroxidation. Carotenoid levels differed significantly between the winter and spring/summer experiments, with higher retinal and lower plasma carotenoid levels in birds from the later experiment.
Conclusion
Our results suggest that variation in the duration of exposure to direct sunlight have limited influence on intraspecific variation in retinal carotenoid accumulation, but that accumulation may track other seasonal–environmental cues and physiological processes.

Contributors

Agent

Created

Date Created
  • 2016-03-29

129060-Thumbnail Image.png

The effect of carotenoid supplementation on immune system development in juvenile male veiled chameleons (Chamaeleo calyptratus)

Description

Introduction
Nutrient availability, assimilation, and allocation can have important and lasting effects on the immune system development of growing animals. Though carotenoid pigments have immunostimulatory properties in many animals, relatively

Introduction
Nutrient availability, assimilation, and allocation can have important and lasting effects on the immune system development of growing animals. Though carotenoid pigments have immunostimulatory properties in many animals, relatively little is known regarding how they influence the immune system during development. Moreover, studies linking carotenoids to health at any life stage have largely been restricted to birds and mammals. We investigated the effects of carotenoid supplementation on multiple aspects of immunity in juvenile veiled chameleons (Chamaeleo calyptratus). We supplemented half of the chameleons with lutein (a xanthophyll carotenoid) for 14 weeks during development and serially measured multiple aspects of immune function, including: agglutination and lysis performance of plasma, wound healing, and plasma nitric oxide concentrations before and after wounding.
Results
Though lutein supplementation effectively elevated circulating carotenoid concentrations throughout the developmental period, we found no evidence that carotenoid repletion enhanced immune function at any point. However, agglutination and lysis scores increased, while baseline nitric oxide levels decreased, as chameleons aged.
Conclusions
Taken together, our results indicate that body mass and age, but not carotenoid access, may play an important role in immune performance of growing chameleons. Hence, studying well-understood physiological processes in novel taxa can provide new perspectives on alternative physiological processes and nutrient function.

Contributors

Agent

Created

Date Created
  • 2014-03-22

129006-Thumbnail Image.png

Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation

Description

Background
The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely

Background
The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviours and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus) and assessed their mate choice behavior in response to color-manipulated male finches.
Results
Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited.
Conclusions
Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behaviour shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

Contributors

Agent

Created

Date Created
  • 2012-01-10

128888-Thumbnail Image.png

Environmental and Parental Influences on Offspring Health and Growth in Great Tits (Parus major)

Description

Sexual selection requires both that there is heritable variation in traits related to fitness, and that either some of this variation is linked to traits of the parents, and/or that

Sexual selection requires both that there is heritable variation in traits related to fitness, and that either some of this variation is linked to traits of the parents, and/or that there are direct benefits of choosing particular individuals as mates. This suggests that if direct benefits are important offspring performance should be predicted by traits of the rearing adults. But if indirect benefits are more significant offspring performance should be predicted by traits of the adults at the nest-of-origin. We conducted cross-fostering experiments in great tits (Parus major) over four years, in two of which we manipulated environmental conditions by providing supplemental food. In a third year, some nestlings were directly supplemented with carotenoids. Nestlings in broods whose rearing adults received supplemental food were heavier and had improved immune responses even when controlling for body mass. Nestling immune function was related to measures of the yellow plumage color of both the rearing male and the putative father. Nestling body mass was influenced by the coloration of both the rearing female and the genetic mother. Our results suggest that features of both their social and putative genetic parents influence nestling health and growth. From this it would appear that females could be gaining both direct and indirect benefits through mate choice of male plumage traits and that it would be possible for males to similarly gain through mate choice of female traits.

Contributors

Agent

Created

Date Created
  • 2013-07-30

128909-Thumbnail Image.png

Differential Effects of Early- and Late-Life Access to Carotenoids on Adult Immune Function and Ornamentation in Mallard Ducks (Anas platyrhynchos)

Description

Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis),

Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis), or may be generally superior when conditions during development were of higher quality (Silver Spoon hypothesis). Here, we tested these hypotheses by examining how diet during development interacted with diet during adulthood to affect adult sexually selected ornamentation and immune function in male mallard ducks (Anas platyrhynchos). Mallards have yellow, carotenoid-pigmented beaks that are used in mate choice, and the degree of beak coloration has been linked to adult immune function. Using a 2×2 factorial experimental design, we reared mallards on diets containing either low or high levels of carotenoids (nutrients that cannot be synthesized de novo) throughout the period of growth, and then provided adults with one of these two diets while simultaneously quantifying beak coloration and response to a variety of immune challenges. We found that both developmental and adult carotenoid supplementation increased circulating carotenoid levels during dietary treatment, but that birds that received low-carotenoid diets during development maintained relatively higher circulating carotenoid levels during an adult immune challenge. Individuals that received low levels of carotenoids during development had larger phytohemagglutinin (PHA)-induced cutaneous immune responses at adulthood; however, dietary treatment during development and adulthood did not affect antibody response to a novel antigen, nitric oxide production, natural antibody levels, hemolytic capacity of the plasma, or beak coloration. However, beak coloration prior to immune challenges positively predicted PHA response, and strong PHA responses were correlated with losses in carotenoid-pigmented coloration. In sum, we did not find consistent support for either the Environmental Matching or Silver Spoon hypotheses. We then describe a new hypothesis that should be tested in future studies examining developmental plasticity.

Contributors

Agent

Created

Date Created
  • 2012-05-30

Song characteristics track bill morphology along a gradient of urbanization in house finches (Haemorhous mexicanus)

Description

Introduction
Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for

Introduction
Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above low-frequency background city noise. However, the ability to make such song modifications may be constrained by several morphological factors, including bill gape, size, and shape, thereby limiting the degree to which certain species can vocally adapt to urban settings. We examined the relationship between song characteristics and bill morphology in a species (the house finch, Haemorhous mexicanus) where both vocal performance and bill size are known to differ between city and rural animals.
Results
We found that bills were longer and narrower in more disturbed, urban areas. We observed an increase in minimum song frequency of urban birds, and we also found that the upper frequency limit of songs decreased in direct relation to bill morphology.
Conclusions
These findings are consistent with the hypothesis that birds with longer beaks and therefore longer vocal tracts sing songs with lower maximum frequencies because longer tubes have lower-frequency resonances. Thus, for the first time, we reveal dual constraints (one biotic, one abiotic) on the song frequency range of urban animals. Urban foraging pressures may additionally interact with the acoustic environment to shape bill traits and vocal performance.

Contributors

Agent

Created

Date Created
  • 2014-11-12