This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 39
Filtering by

Clear all filters

128259-Thumbnail Image.png
Description

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of epidemics. We focus on reactionary behavioural changes, which apply to both social distancing and voluntary vaccination participations. Our analyses reveal complex relationships between spontaneous and uncoordinated behavioural changes, the emergence of its contagion properties, and mitigation of infectious diseases. We find that the presence of effective behavioural changes can impede the persistence of disease. Furthermore, it was found that under perfect effective behavioural change, there are three regions in the response factor (e.g., imitation and/or reactionary) and behavioural scale factor (e.g., global/local) factors ρ–α behavioural space. Mainly, (1) disease is always endemic even in the presence of behavioural change, (2) behavioural-prevalence plasticity is observed and disease can sometimes be eradication, and (3) elimination of endemic disease under permanence of permanent behavioural change is achieved. These results suggest that preventive behavioural changes (e.g., non-pharmaceutical prophylactic measures, social distancing and exclusion, crowd avoidance) are influenced by individual differences in perception of risks and are a salient feature of epidemics. Additionally, these findings indicates that care needs to be taken when considering the effect of adaptive behavioural change in predicting the course of epidemics, and as well as the interpretation and development of the public health measures that account for spontaneous behavioural changes.

Created2015-10-14
128265-Thumbnail Image.png
Description

The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent

The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent workers that can develop into all castes (dispersing reproductives, nest-inheriting replacement reproductives, and soldiers). In contrast, the fungus-growing termite Macrotermes natalensis belongs to the higher termites and has very large and complex societies with morphologically distinct castes that are life-time sterile. Here we compare key characteristics of genomic architecture, focusing on genes involved in communication, immune defenses, mating biology and symbiosis that were likely important in termite social evolution. We discuss these in relation to what is known about these genes in the ants and outline hypothesis for further testing.

ContributorsKorb, Judith (Author) / Poulsen, Michael (Author) / Hu, Haofu (Author) / Li, Cai (Author) / Boomsma, Jacobus J. (Author) / Zhang, Guojie (Author) / Liebig, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-04
128231-Thumbnail Image.png
Description

Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with

Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with similar data for eusocial Hymenoptera, to better identify commonalities and differences in achieving this significant transition. We show an expansion of genes related to male fertility, with upregulated gene expression in male reproductive individuals reflecting the profound differences in mating biology relative to the Hymenoptera. For several chemoreceptor families, we show divergent numbers of genes, which may correspond to the more claustral lifestyle of these termites. We also show similarities in the number and expression of genes related to caste determination mechanisms. Finally, patterns of DNA methylation and alternative splicing support a hypothesized epigenetic regulation of caste differentiation.

ContributorsTerrapon, Nicolas (Author) / Li, Cai (Author) / Robertson, Hugh M. (Author) / Ji, Lu (Author) / Meng, Xuehong (Author) / Booth, Warren (Author) / Chen, Zhensheng (Author) / Childers, Christopher P. (Author) / Glastad, Karl M. (Author) / Gokhale, Kaustubh (Author) / Gowin, Johannes (Author) / Gronenberg, Wulfila (Author) / Hermansen, Russell A. (Author) / Hu, Haofu (Author) / Hunt, Brendan G. (Author) / Huylmans, Ann Kathrin (Author) / Khalil, Sayed M. S. (Author) / Mitchell, Robert D. (Author) / Munoz-Torres, Monica C. (Author) / Mustard, Julie (Author) / Pan, Hailin (Author) / Reese, Justin T. (Author) / Scharf, Michael E. (Author) / Sun, Fengming (Author) / Vogel, Heiko (Author) / Xiao, Jin (Author) / Yang, Wei (Author) / Yang, Zhikai (Author) / Yang, Zuoquan (Author) / Zhou, Jiajian (Author) / Zhu, Jiwei (Author) / Brent, Colin S. (Author) / Elsik, Christine G. (Author) / Goodisman, Michael A. D. (Author) / Liberles, David A. (Author) / Roe, R. Michael (Author) / Vargo, Edward L. (Author) / Vilcinskas, Andreas (Author) / Wang, Jun (Author) / Bornberg-Bauer, Erich (Author) / Korb, Judith (Author) / Zhang, Guojie (Author) / Liebig, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-05-20
127996-Thumbnail Image.png
Description

Antiviral resistance in influenza is rampant and has the possibility of causing major morbidity and mortality. Previous models have identified treatment regimes to minimize total infections and keep resistance low. However, the bulk of these studies have ignored stochasticity and heterogeneous contact structures. Here we develop a network model of

Antiviral resistance in influenza is rampant and has the possibility of causing major morbidity and mortality. Previous models have identified treatment regimes to minimize total infections and keep resistance low. However, the bulk of these studies have ignored stochasticity and heterogeneous contact structures. Here we develop a network model of influenza transmission with treatment and resistance, and present both standard mean-field approximations as well as simulated dynamics. We find differences in the final epidemic sizes for identical transmission parameters (bistability) leading to different optimal treatment timing depending on the number initially infected. We also find, contrary to previous results, that treatment targeted by number of contacts per individual (node degree) gives rise to more resistance at lower levels of treatment than non-targeted treatment. Finally we highlight important differences between the two methods of analysis (mean-field versus stochastic simulations), and show where traditional mean-field approximations fail. Our results have important implications not only for the timing and distribution of influenza chemotherapy, but also for mathematical epidemiological modeling in general. Antiviral resistance in influenza may carry large consequences for pandemic mitigation efforts, and models ignoring contact heterogeneity and stochasticity may provide misleading policy recommendations.

Created2013-02-07
127997-Thumbnail Image.png
Description

Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers’ ovaries and if she is removed, workers can transition to

Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers’ ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.

ContributorsPask, Gregory M. (Author) / Slone, Jesse D. (Author) / Millar, Jocelyn G. (Author) / Das, Prithwiraj (Author) / Moreira, Jardel A. (Author) / Zhou, Xiaofan (Author) / Bello, Jan (Author) / Berger, Shelley L. (Author) / Bonasio, Roberto (Author) / Desplan, Claude (Author) / Reinberg, Danny (Author) / Liebig, Juergen (Author) / Zwiebel, Laurence J. (Author) / Ray, Anandasankar (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-17
128296-Thumbnail Image.png
Description

The sophisticated organization of eusocial insect societies is largely based on the regulation of complex behaviors by hydrocarbon pheromones present on the cuticle. We used electrophysiology to investigate the detection of cuticular hydrocarbons (CHCs) by female-specific olfactory sensilla basiconica on the antenna of Camponotus floridanus ants through the utilization of

The sophisticated organization of eusocial insect societies is largely based on the regulation of complex behaviors by hydrocarbon pheromones present on the cuticle. We used electrophysiology to investigate the detection of cuticular hydrocarbons (CHCs) by female-specific olfactory sensilla basiconica on the antenna of Camponotus floridanus ants through the utilization of one of the largest family of odorant receptors characterized so far in insects. These sensilla, each of which contains multiple olfactory receptor neurons, are differentially sensitive to CHCs and allow them to be classified into three broad groups that collectively detect every hydrocarbon tested, including queen and worker-enriched CHCs. This broad-spectrum sensitivity is conserved in a related species, Camponotus laevigatus, allowing these ants to detect CHCs from both nestmates and non-nestmates. Behavioral assays demonstrate that these ants are excellent at discriminating CHCs detected by the antenna, including enantiomers of a candidate queen pheromone that regulates the reproductive division of labor.

ContributorsSharma, Kavita R. (Author) / Enzmann, Brittany (Author) / Schmidt, Yvonne (Author) / Moore, Dani (Author) / Jones, Graeme R. (Author) / Parker, Jane (Author) / Berger, Shelley L. (Author) / Reinberg, Danny (Author) / Zwiebel, Laurence J. (Author) / Breit, Bernhard (Author) / Liebig, Juergen (Author) / Ray, Anandasankar (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-13
128366-Thumbnail Image.png
Description

Insects communicate with pheromones using sensitive antennal sensilla. Although trace amounts of pheromones can be detected by many insects, context-dependent increased costs of high sensitivity might lead to plasticity in sensillum responsiveness. We have functionally characterized basiconic sensilla of the ant Harpegnathos saltator for responses to general odors in comparison

Insects communicate with pheromones using sensitive antennal sensilla. Although trace amounts of pheromones can be detected by many insects, context-dependent increased costs of high sensitivity might lead to plasticity in sensillum responsiveness. We have functionally characterized basiconic sensilla of the ant Harpegnathos saltator for responses to general odors in comparison to cuticular hydrocarbons which can act as fertility signals emitted by the principal reproductive(s) of a colony to inhibit reproduction by worker colony members. When released from inhibition workers may become reproductive gamergates. We observed plasticity in olfactory sensitivity after transition to reproductive status with significant reductions in electrophysiological responses to several long-chained cuticular hydrocarbons. Although gamergates lived on average five times longer than non-reproductive workers, the shift to reproductive status rather than age differences matched the pattern of changes in olfactory sensitivity. Decreasing sensillum responsiveness to cuticular hydrocarbons could potentially reduce mutually inhibitory or self-inhibitory effects on gamergate reproduction.

ContributorsGhaninia Tabarestani, Majid (Author) / Haight, Kevin (Author) / Berger, Shelley L. (Author) / Reinberg, Danny (Author) / Zwiebel, Laurence J. (Author) / Ray, Anandasankar (Author) / Liebig, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-16
128027-Thumbnail Image.png
Description

Ants are a highly successful family of insects that thrive in a variety of habitats across the world. Perhaps their best-known features are complex social organization and strict division of labor, separating reproduction from the day-to-day maintenance and care of the colony, as well as strict discrimination against foreign individuals.

Ants are a highly successful family of insects that thrive in a variety of habitats across the world. Perhaps their best-known features are complex social organization and strict division of labor, separating reproduction from the day-to-day maintenance and care of the colony, as well as strict discrimination against foreign individuals. Since these social characteristics in ants are thought to be mediated by semiochemicals, a thorough analysis of these signals, and the receptors that detect them, is critical in revealing mechanisms that lead to stereotypic behaviors. To address these questions, we have defined and characterized the major chemoreceptor families in a pair of behaviorally and evolutionarily distinct ant species, Camponotus floridanus and Harpegnathos saltator. Through comprehensive re-annotation, we show that these ant species harbor some of the largest yet known repertoires of odorant receptors (Ors) among insects, as well as a more modest number of gustatory receptors (Grs) and variant ionotropic glutamate receptors (Irs).

Our phylogenetic analyses further demonstrate remarkably rapid gains and losses of ant Ors, while Grs and Irs have also experienced birth-and-death evolution to different degrees. In addition, comparisons of antennal transcriptomes between sexes identify many chemoreceptors that are differentially expressed between males and females and between species. We have also revealed an agonist for a worker-enriched OR from C. floridanus, representing the first case of a heterologously characterized ant tuning Or. Collectively, our analysis reveals a large number of ant chemoreceptors exhibiting patterns of differential expression and evolution consistent with sex/species-specific functions. These differentially expressed genes are likely associated with sex-based differences, as well as the radically different social lifestyles observed between C. floridanus and H. saltator, and thus are targets for further functional characterization. Our findings represent an important advance toward understanding the molecular basis of social interactions and the differential chemical ecologies among ant species.

ContributorsZhou, Xiaofan (Author) / Slone, Jesse D. (Author) / Rokas, Antonis (Author) / Berger, Shelley L. (Author) / Liebig, Juergen (Author) / Ray, Anandasankar (Author) / Reinberg, Danny (Author) / Zwiebel, Laurence J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-08-30
128055-Thumbnail Image.png
Description

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA at the population level and assess the effect of control intervention strategies. We used Monte-Carlo Markov Chain

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA at the population level and assess the effect of control intervention strategies. We used Monte-Carlo Markov Chain (MCMC) techniques to parameterize our model using monthly time series data on SSTIs incidence in children (≤19 years) during January 2004 -December 2006 in Maricopa County, Arizona. Our model-based forecast for the period January 2007–December 2008 also provided a good fit to data. We also carried out an uncertainty and sensitivity analysis on the control reproduction number, Rc which we estimated at 1.3 (95% CI [1.2,1.4]) based on the model fit to data. Using our calibrated model, we evaluated the effect of typical intervention strategies namely reducing the contact rate of infected individuals owing to awareness of infection and decolonization strategies targeting symptomatic infected individuals on both and the long-term disease dynamics. We also evaluated the impact of hypothetical decolonization strategies targeting asymptomatic colonized individuals. We found that strategies focused on infected individuals were not capable of achieving disease control when implemented alone or in combination. In contrast, our results suggest that decolonization strategies targeting the pediatric population colonized with CA-MRSA have the potential of achieving disease elimination.

Created2013-11-21
127948-Thumbnail Image.png
Description

Neglected tropical diseases (NTD), account for a large proportion of the global disease burden, and their control faces several challenges including diminishing human and financial resources for those distressed from such diseases. Visceral leishmaniasis (VL), the second-largest parasitic killer (after malaria) and an NTD affects poor populations and causes considerable

Neglected tropical diseases (NTD), account for a large proportion of the global disease burden, and their control faces several challenges including diminishing human and financial resources for those distressed from such diseases. Visceral leishmaniasis (VL), the second-largest parasitic killer (after malaria) and an NTD affects poor populations and causes considerable cost to the affected individuals. Mathematical models can serve as a critical and cost-effective tool for understanding VL dynamics, however, complex array of socio-economic factors affecting its dynamics need to be identified and appropriately incorporated within a dynamical modeling framework. This study reviews literature on vector-borne diseases and collects challenges and successes related to the modeling of transmission dynamics of VL. Possible ways of creating a comprehensive mathematical model is also discussed.

ContributorsDebRoy, Swati (Author) / Prosper, Olivia (Author) / Mishoe, Austin (Author) / Mubayi, Anuj (Author) / School of Human Evolution and Social Change (Contributor)
Created2017-09-18