This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

128265-Thumbnail Image.png
Description

The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent

The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent workers that can develop into all castes (dispersing reproductives, nest-inheriting replacement reproductives, and soldiers). In contrast, the fungus-growing termite Macrotermes natalensis belongs to the higher termites and has very large and complex societies with morphologically distinct castes that are life-time sterile. Here we compare key characteristics of genomic architecture, focusing on genes involved in communication, immune defenses, mating biology and symbiosis that were likely important in termite social evolution. We discuss these in relation to what is known about these genes in the ants and outline hypothesis for further testing.

ContributorsKorb, Judith (Author) / Poulsen, Michael (Author) / Hu, Haofu (Author) / Li, Cai (Author) / Boomsma, Jacobus J. (Author) / Zhang, Guojie (Author) / Liebig, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-04
128478-Thumbnail Image.png
Description

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives,

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives, a comprehensive examination of this hypothesis has not been possible. Here, we annotate ∼3,000 odorant and gustatory receptors in recently sequenced Hymenoptera genomes and systematically compare >4,000 chemoreceptors from 13 hymenopterans, representing one solitary lineage (wasps) and three independently evolved eusocial lineages (ants and two bees). We observe a strong general tendency for chemoreceptors to expand in Hymenoptera, whereas the specifics of gene gains/losses are highly diverse between lineages. We also find more frequent positive selection on chemoreceptors in a facultative eusocial bee and in the common ancestor of ants compared with solitary wasps. Our results suggest that the frequent expansions of chemoreceptors have facilitated the transition to eusociality. Divergent expression patterns of odorant receptors between honeybee and ants further indicate differential roles of chemoreceptors in parallel trajectories of social evolution.

ContributorsZhou, Xiaofan (Author) / Rokas, Antonis (Author) / Berger, Shelley L. (Author) / Liebig, Juergen (Author) / Ray, Anandasankar (Author) / Zwiebel, Laurence J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-12
128564-Thumbnail Image.png
Description

Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects.

Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects. We used replicated bisulfite-sequencing to investigate patterns of DNA methylation in both sexes and among castes of Z. nevadensis. We discovered that Z. nevadensis displayed some of the highest levels of DNA methylation found in insects. We also found strong differences in methylation between castes. Methylated genes tended to be uniformly and highly expressed demonstrating the antiquity of associations between intragenic methylation and gene expression. Differentially methylated genes were more likely to be alternatively spliced than not differentially methylated genes, and possessed considerable enrichment for development-associated functions. We further observed strong overrepresentation of multiple transcription factor binding sites and miRNA profiles associated with differential methylation, providing new insights into the possible function of DNA methylation. Overall, our results show that DNA methylation is widespread and associated with caste differences in termites. More generally, this study provides insights into the function of DNA methylation and the success of insect societies.

ContributorsGlastad, Karl M. (Author) / Gokhale, Kaustubh (Author) / Liebig, Juergen (Author) / Goodisman, Michael A. D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-11-16
128541-Thumbnail Image.png
Description

Gut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a

Gut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a genome project of the ant Harpegnathos saltator. We present an analysis of the closed 1.86 Mb genome of the ant-associated bacterium, for which we suggest the species name Candidatus Tokpelaia hoelldoblerii. A phylogenetic analysis reveals a relationship to Bartonella and Brucella, which infect mammals. Novel gene acquisitions include a gene for a putative extracellular protein of more than 6,000 amino acids secreted by the type I secretion system, which may be involved in attachment to the gut epithelium. No genes for nitrogen fixation could be identified, but genes for a multi-subunit urease protein complex are present in the genome. The urease genes are also present in Brucella, which has a fecal-oral transmission pathway, but not in Bartonella, which use blood-borne transmission pathways. We hypothesize that the gain and loss of the urease function is related to transmission strategies and lifestyle changes in the host-associated members of the Rhizobiales.

ContributorsNeuvonen, Minna-Maria (Author) / Tamarit, Daniel (Author) / Naslund, Kristina (Author) / Liebig, Juergen (Author) / Feldhaar, Heike (Author) / Moran, Nancy A. (Author) / Guy, Lionel (Author) / Andersson, Siv G. E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-12-15
128767-Thumbnail Image.png
Description

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance.

Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid-shear environment of microgravity is relevant to physical forces encountered by pathogens during the infection process, insights gained from this study could identify novel infectious disease mechanisms, with downstream benefits for the general public.

Created2013-12-04
128759-Thumbnail Image.png
Description

Background: The molecular mechanisms of variations in individual longevity are not well understood, even though longevity can be increased substantially by means of diverse experimental manipulations. One of the factors supposed to be involved in the increase of longevity is a higher stress resistance. To test this hypothesis in a natural

Background: The molecular mechanisms of variations in individual longevity are not well understood, even though longevity can be increased substantially by means of diverse experimental manipulations. One of the factors supposed to be involved in the increase of longevity is a higher stress resistance. To test this hypothesis in a natural system, eusocial insects such as bees or ants are ideally suited. In contrast to most other eusocial insects, ponerine ants show a peculiar life history that comprises the possibility to switch during adult life from a normal worker to a reproductive gamergate, therewith increasing their life expectancy significantly.

Results: We show that increased resistance against major stressors, such as reactive oxygen species and infection accompanies the switch from a life-history trait with normal lifespan to one with a longer life expectancy. A short period of social isolation was sufficient to enhance stress resistance of workers from the ponerine ant species Harpegnathos saltator significantly. All ant groups with increased stress resistances (reproducing gamergates and socially isolated workers) have lower catalase activities and glutathione levels than normal workers. Therewith, these ants resemble the characteristics of the youngest ants in the colony.

Conclusions: Social insects with their specific life history including a switch from normal workers to reproducing gamergates during adult life are well suited for ageing research. The regulation of stress resistance in gamergates seemed to be modified compared to foraging workers in an economic way. Interestingly, a switch towards more stress resistant animals can also be induced by a brief period of social isolation, which may already be associated with a shift to a reproductive trajectory. In Harpegnathos saltator, stress resistances are differently and potentially more economically regulated in reproductive individuals, highlighting the significance of reproduction for an increase in longevity in social insects. As already shown for other organisms with a long lifespan, this trait is not directly coupled to higher levels of enzymatic and non-enzymatic antioxidants.

Created2011-01-27
129004-Thumbnail Image.png
Description

Background: Mutual policing is an important mechanism for reducing conflict in cooperative groups. In societies of ants, bees, and wasps, mutual policing of worker reproduction can evolve when workers are more closely related to the queen's sons than to the sons of workers or when the costs of worker reproduction lower

Background: Mutual policing is an important mechanism for reducing conflict in cooperative groups. In societies of ants, bees, and wasps, mutual policing of worker reproduction can evolve when workers are more closely related to the queen's sons than to the sons of workers or when the costs of worker reproduction lower the inclusive fitness of workers. During colony growth, relatedness within the colony remains the same, but the costs of worker reproduction may change. The costs of worker reproduction are predicted to be greatest in incipient colonies. If the costs associated with worker reproduction outweigh the individual direct benefits to workers, policing mechanisms as found in larger colonies may be absent in incipient colonies.

Results: We investigated policing behavior across colony growth in the ant 'Camponotus floridanus.' In large colonies of this species, worker reproduction is policed by the destruction of worker-laid eggs. We found workers from incipient colonies do not exhibit policing behavior, and instead tolerate all conspecific eggs. The change in policing behavior is consistent with changes in egg surface hydrocarbons, which provide the informational basis for policing; eggs laid by queens from incipient colonies lack the characteristic hydrocarbons on the surface of eggs laid by queens from large colonies, making them chemically indistinguishable from worker-laid eggs. We also tested the response to fertility information in the context of queen tolerance. Workers from incipient colonies attacked foreign queens from large colonies; whereas workers from large colonies tolerated such queens. Workers from both incipient and large colonies attacked foreign queens from incipient colonies.

Conclusions: Our results provide novel insights into the regulation of worker reproduction in social insects at both the proximate and ultimate levels. At the proximate level, our results show that mechanisms of social regulation, such as the response to fertility signals, change dramatically over a colony's life cycle. At the ultimate level, our results emphasize the importance of factors besides relatedness in predicting the level of conflict within a colony. Our results also suggest policing may not be an important regulatory force at every stage of colony development. Changes relating to the life cycle of the colony are sufficient to account for major differences in social regulation in an insect colony. Mechanisms of conflict mediation observed in one phase of a social group's development cannot be generalized to all stages.

ContributorsMoore, Dani (Author) / Liebig, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2010-10-27
128885-Thumbnail Image.png
Description

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established.

Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.

Created2011-12-19
128629-Thumbnail Image.png
Description

A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of

A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580.

ContributorsYang, Jiseon (Author) / Barrila, Jennifer (Author) / Roland, Kenneth (Author) / Kilbourne, Jacquelyn (Author) / Ott, C. Mark (Author) / Forsyth, Rebecca (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-06-19
128010-Thumbnail Image.png
Description

Low fluid shear force, including that encountered in microgravity models, induces bacterial responses, but the range of bacteria capable of responding to this signal remains poorly characterized. We systematically analyzed a range of Gram negative Enterobacteriaceae for conservation of the low-shear modeled microgravity (LSMMG) response using phenotypic assays, qPCR, and

Low fluid shear force, including that encountered in microgravity models, induces bacterial responses, but the range of bacteria capable of responding to this signal remains poorly characterized. We systematically analyzed a range of Gram negative Enterobacteriaceae for conservation of the low-shear modeled microgravity (LSMMG) response using phenotypic assays, qPCR, and targeted mutations. Our results indicate LSMMG response conservation across Enterobacteriacae with potential variance in up- or down-regulation of a given response depending on genus. Based on the data, we analyzed the role of the trp operon genes and the TrpR regulator in the LSMMG response using targeted mutations in these genes in S. Typhimurium and E. coli. We found no alteration of the LSMMG response compared to WT in these mutant strains under the conditions tested here. To our knowledge, this study is first-of-kind for Citrobacter, Enterobacter, and Serratia, presents novel data for Escherichia, and provides the first analysis of trp genes in LSMMG responses. This impacts our understanding of how LSMMG affects bacteria and our ability to modify bacteria with this condition in the future.

ContributorsSoni, Anjali (Author) / O'Sullivan, Laura (Author) / Quick, Laura N. (Author) / Ott, C. Mark (Author) / Nickerson, Cheryl (Author) / Wilson, James W. (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014