This growing collection consists of scholarly works authored by ASU-affiliated faculty, students, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

127977-Thumbnail Image.png

Social ecological correlates of workplace sedentary behavior

Description

Background
To identify social ecological correlates of objectively measured workplace sedentary behavior.
Methods
Participants from 24 worksites - across academic, industrial, and government sectors - wore an activPAL-micro accelerometer for

Background
To identify social ecological correlates of objectively measured workplace sedentary behavior.
Methods
Participants from 24 worksites - across academic, industrial, and government sectors - wore an activPAL-micro accelerometer for 7-days (Jan-Nov 2016). Work time was segmented using daily logs. Sedentary behavior outcomes included time spent sitting, standing, in light intensity physical activity (LPA, stepping cadence <100 steps/min), and in prolonged sitting bouts (>30 min). Outcomes were standardized to an 8 h work day. Two electronic surveys were completed to derive individual (job type and work engagement), cultural (lunch away from the desk, walking at lunch and face-to-face interaction), physical (personal printer and office type) and organizational (sector) factors. Mixed-model analyses with worksite-level clustering were performed to examine multi-level associations. Secondary analyses examined job type and sector as moderators of these associations. All models were adjusted for age, race/ethnicity and gender.
Results
Participants (N = 478; 72% female; age: 45.0 ± 11.3 years; 77.8% non-Hispanic white) wore the activPAL-micro for 90.2 ± 15.5% of the reported workday. Walking at lunch was positively associated with LPA (5.0 ± 0.5 min/8 h, P < 0.001). Regular face-to-face interaction was negatively associated with prolonged sitting (−11.3 ± 4.8 min/8 h, P < 0.05). Individuals in private offices sat more (20.1 ± 9.1 min/8 h, P < 0.05), stood less (−21.5 ± 8.8 min/8 h, P < 0.05), and engaged in more prolonged sitting (40.9 ± 11.2 min/8 h, P < 0.001) than those in public office space. These associations were further modified by job type and sector.
Conclusions
Work-specific individual, cultural, physical and organizational factors are associated with workplace sedentary behavior. Associations vary by job type and sector and should be considered in the design of workplace interventions to reduce sedentary behavior.

Contributors

Agent

Created

Date Created
  • 2017-08-31

128081-Thumbnail Image.png

Validation of a Smartphone App for the Assessment of Sedentary and Active Behaviors

Description

Background: Although current technological advancements have allowed for objective measurements of sedentary behavior via accelerometers, these devices do not provide the contextual information needed to identify targets for behavioral interventions

Background: Although current technological advancements have allowed for objective measurements of sedentary behavior via accelerometers, these devices do not provide the contextual information needed to identify targets for behavioral interventions and generate public health guidelines to reduce sedentary behavior. Thus, self-reports still remain an important method of measurement for physical activity and sedentary behaviors.
Objective: This study evaluated the reliability, validity, and sensitivity to change of a smartphone app in assessing sitting, light-intensity physical activity (LPA), and moderate-vigorous physical activity (MVPA).
Methods: Adults (N=28; 49.0 years old, standard deviation [SD] 8.9; 85% men; 73% Caucasian; body mass index=35.0, SD 8.3 kg/m2) reported their sitting, LPA, and MVPA over an 11-week behavioral intervention. During three separate 7-day periods, participants wore the activPAL3c accelerometer/inclinometer as a criterion measure. Intraclass correlation (ICC; 95% CI) and bias estimates (mean difference [δ] and root of mean square error [RMSE]) were used to compare app-based reported behaviors to measured sitting time (lying/seated position), LPA (standing or stepping at <100 steps/minute), and MVPA (stepping at >100 steps/minute).
Results: Test-retest results suggested moderate agreement with the criterion for sedentary time, LPA, and MVPA (ICC=0.65 [0.43-0.82], 0.67 [0.44-0.83] and 0.69 [0.48-0.84], respectively). The agreement between the two measures was poor (ICC=0.05-0.40). The app underestimated sedentary time (δ=-45.9 [-67.6, -24.2] minutes/day, RMSE=201.6) and overestimated LPA and MVPA (δ=18.8 [-1.30 to 38.9] minutes/day, RMSE=183; and δ=29.3 [25.3 to 33.2] minutes/day, RMSE=71.6, respectively). The app underestimated change in time spent during LPA and MVPA but overestimated change in sedentary time. Both measures showed similar directions in changed scores on sedentary time and LPA.
Conclusions: Despite its inaccuracy, the app may be useful as a self-monitoring tool in the context of a behavioral intervention. Future research may help to clarify reasons for under- or over-reporting of behaviors.

Contributors

Agent

Created

Date Created
  • 2017-08

128596-Thumbnail Image.png

Efficacy of a Student-Led, Community-Based, Multifactorial Fall Prevention Program: Stay in Balance

Description

Background: Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older

Background: Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older adults; however, the availability of sustainable, community-based FPPs is limited.
Methods: We conducted a 24-week quasi-experimental study to evaluate the efficacy of a community-based, multifactorial FPP [Stay in Balance (SIB)] on dynamic and functional balance and muscular strength. The SIB program was delivered by allied health students and included a health education program focused on fall risk factors and a progressive exercise program emphasizing lower-extremity strength and balance. All participants initially received the 12-week SIB program, and participants were non-randomly assigned at baseline to either continue the SIB exercise program at home or as a center-based program for an additional 12 weeks. Adults aged 60 and older (n = 69) who were at-risk of falling (fall history or 2+ fall risk factors) were recruited to participate. Mixed effects repeated measures using Statistical Application Software Proc Mixed were used to examine group, time, and group-by-time effects on dynamic balance (8-Foot Up and Go), functional balance (Berg Balance Scale), and muscular strength (30 s chair stands and 30 s arm curls). Non-normally distributed outcome variables were log-transformed.
Results: After adjusting for age, gender, and body mass index, 8-Foot Up and Go scores, improved significantly over time [F[subscript (2,173)] = 8.92, p = 0.0; T0 − T2 diff = 1.2 (1.0)]. Berg Balance Scores [F[subscript (2,173)] = 29.0, p < 0.0001; T0 − T2 diff = 4.96 (0.72)], chair stands [F[subscript (2,171)] = 10.17, p < 0.0001; T0 − T2 diff = 3.1 (0.7)], and arm curls [F[subscript (2,171)] = 12.7, p < 0.02; T0 − T2 diff = 2.7 (0.6)] also all improved significantly over time. There were no significant group-by-time effects observed for any of the outcomes.
Conclusion: The SIB program improved dynamic and functional balance and muscular strength in older adults at-risk for falling. Our findings indicate continuing home-based strength and balance exercises at home after completion of a center-based FPP program may be an effective and feasible way to maintain improvements in balance and strength parameters.

Contributors

Agent

Created

Date Created
  • 2017-02-27

128616-Thumbnail Image.png

Behavioral Periodicity Detection from 24 h Wrist Accelerometry and Associations with Cardiometabolic Risk and Health-Related Quality of Life

Description

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health.

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants (17 men, 3 women, aged 35–65) continuously for 64.4±26.2 (range: 13.9 to 102.0) consecutive days. Cardiometabolic risk biomarkers and health-related quality of life metrics were assessed at baseline. Periodograms were constructed to determine patterns emergent from the accelerometer data. Periodicity strength was calculated using circular autocorrelations for time-lagged windows. The most notable periodicity was at 24 h, indicating a circadian rest-activity cycle; however, its strength varied significantly across participants. Periodicity strength was most consistently associated with LDL-cholesterol (r’s = 0.40–0.79, P’s < 0.05) and triglycerides (r’s = 0.68–0.86, P’s < 0.05) but also associated with hs-CRP and health-related quality of life, even after adjusting for demographics and self-rated physical activity and insomnia symptoms. Our framework demonstrates a new method for characterizing behavior patterns longitudinally which captures relationships between 24 h accelerometry data and health outcomes.

Contributors

Agent

Created

Date Created
  • 2016-01-04

128949-Thumbnail Image.png

Validity and reliability of Nike + Fuelband for estimating physical activity energy expenditure

Description

Background
The Nike + Fuelband is a commercially available, wrist-worn accelerometer used to track physical activity energy expenditure (PAEE) during exercise. However, validation studies assessing the accuracy of this device for estimating

Background
The Nike + Fuelband is a commercially available, wrist-worn accelerometer used to track physical activity energy expenditure (PAEE) during exercise. However, validation studies assessing the accuracy of this device for estimating PAEE are lacking. Therefore, this study examined the validity and reliability of the Nike + Fuelband for estimating PAEE during physical activity in young adults. Secondarily, we compared PAEE estimation of the Nike + Fuelband with the previously validated SenseWear Armband (SWA).
Methods
Twenty-four participants (n = 24) completed two, 60-min semi-structured routines consisting of sedentary/light-intensity, moderate-intensity, and vigorous-intensity physical activity. Participants wore a Nike + Fuelband and SWA, while oxygen uptake was measured continuously with an Oxycon Mobile (OM) metabolic measurement system (criterion).
Results
The Nike + Fuelband (ICC = 0.77) and SWA (ICC = 0.61) both demonstrated moderate to good validity. PAEE estimates provided by the Nike + Fuelband (246 ± 67 kcal) and SWA (238 ± 57 kcal) were not statistically different than OM (243 ± 67 kcal). Both devices also displayed similar mean absolute percent errors for PAEE estimates (Nike + Fuelband = 16 ± 13 %; SWA = 18 ± 18 %). Test-retest reliability for PAEE indicated good stability for Nike + Fuelband (ICC = 0.96) and SWA (ICC = 0.90).
Conclusion
The Nike + Fuelband provided valid and reliable estimates of PAEE, that are similar to the previously validated SWA, during a routine that included approximately equal amounts of sedentary/light-, moderate- and vigorous-intensity physical activity.

Contributors

Agent

Created

Date Created
  • 2015-06-30

129067-Thumbnail Image.png

Determining who responds better to a computer- vs. human-delivered physical activity intervention: results from the community health advice by telephone (CHAT) trial

Description

Background
Little research has explored who responds better to an automated vs. human advisor for health behaviors in general, and for physical activity (PA) promotion in particular. The purpose of

Background
Little research has explored who responds better to an automated vs. human advisor for health behaviors in general, and for physical activity (PA) promotion in particular. The purpose of this study was to explore baseline factors (i.e., demographics, motivation, interpersonal style, and external resources) that moderate intervention efficacy delivered by either a human or automated advisor.
Methods
Data were from the CHAT Trial, a 12-month randomized controlled trial to increase PA among underactive older adults (full trial N = 218) via a human advisor or automated interactive voice response advisor. Trial results indicated significant increases in PA in both interventions by 12 months that were maintained at 18-months. Regression was used to explore moderation of the two interventions.
Results
Results indicated amotivation (i.e., lack of intent in PA) moderated 12-month PA (d = 0.55, p < 0.01) and private self-consciousness (i.e., tendency to attune to one’s own inner thoughts and emotions) moderated 18-month PA (d = 0.34, p < 0.05) but a variety of other factors (e.g., demographics) did not (p > 0.12).
Conclusions
Results provide preliminary evidence for generating hypotheses about pathways for supporting later clinical decision-making with regard to the use of either human- vs. computer-delivered interventions for PA promotion.

Contributors

Agent

Created

Date Created
  • 2013-09-22

128861-Thumbnail Image.png

Harnessing Different Motivational Frames via Mobile Phones to Promote Daily Physical Activity and Reduce Sedentary Behavior in Aging Adults

Description

Mobile devices are a promising channel for delivering just-in-time guidance and support for improving key daily health behaviors. Despite an explosion of mobile phone applications aimed at physical activity and

Mobile devices are a promising channel for delivering just-in-time guidance and support for improving key daily health behaviors. Despite an explosion of mobile phone applications aimed at physical activity and other health behaviors, few have been based on theoretically derived constructs and empirical evidence. Eighty adults ages 45 years and older who were insufficiently physically active, engaged in prolonged daily sitting, and were new to smartphone technology, participated in iterative design development and feasibility testing of three daily activity smartphone applications based on motivational frames drawn from behavioral science theory and evidence. An “analytically” framed custom application focused on personalized goal setting, self-monitoring, and active problem solving around barriers to behavior change. A “socially” framed custom application focused on social comparisons, norms, and support. An “affectively” framed custom application focused on operant conditioning principles of reinforcement scheduling and emotional transference to an avatar, whose movements and behaviors reflected the physical activity and sedentary levels of the user. To explore the applications' initial efficacy in changing regular physical activity and leisure-time sitting, behavioral changes were assessed across eight weeks in 68 participants using the CHAMPS physical activity questionnaire and the Australian sedentary behavior questionnaire. User acceptability of and satisfaction with the applications was explored via a post-intervention user survey. The results indicated that the three applications were sufficiently robust to significantly improve regular moderate-to-vigorous intensity physical activity and decrease leisure-time sitting during the 8-week behavioral adoption period. Acceptability of the applications was confirmed in the post-intervention surveys for this sample of midlife and older adults new to smartphone technology. Preliminary data exploring sustained use of the applications across a longer time period yielded promising results. The results support further systematic investigation of the efficacy of the applications for changing these key health-promoting behaviors.

Contributors

Agent

Created

Date Created
  • 2013-04-25