This growing collection consists of scholarly works authored by ASU-affiliated faculty, students, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

128952-Thumbnail Image.png

Climate Change Vulnerability in the Food, Energy, and Water Nexus: Concerns for Agricultural Production in Arizona and its Urban Export Supply

Description

Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is

Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing Arizona to supply most of the country's winter lettuce and vegetables. In addition to Phoenix and Tucson, cities including El Paso, Las Vegas, Los Angeles, and San Diego rely on Arizona for several types of agricultural products such as animal feed and livestock, meaning that disruptions to Arizona's agriculture also disrupt food supply chains to at least six major cities.

Arizona's predominately irrigated agriculture relies on water imported through an energy intensive process from water-stressed regions. Most irrigation in Arizona is electricity powered, so failures in energy or water systems can cascade to the food system, creating a food-energy-water (FEW) nexus of vulnerability. We construct a dynamic simulation model of the FEW nexus in Arizona to assess the potential impacts of increasing temperatures and disruptions to energy and water supplies on crop irrigation requirements, on-farm energy use, and yield.

We use this model to identify critical points of intersection between energy, water, and agricultural systems and quantify expected increases in resource use and yield loss. Our model is based on threshold temperatures of crops, USDA and US Geological Survey data, Arizona crop budgets, and region-specific literature. We predict that temperature increase above the baseline could decrease yields by up to 12.2% per 1 °C for major Arizona crops and require increased irrigation of about 2.6% per 1 °C. Response to drought varies widely based on crop and phenophase, so we estimate irrigation interruption effects through scenario analysis. We provide an overview of potential adaptation measures farmers can take, and barriers to implementation.

Contributors

Agent

Created

Date Created
  • 2017-02-28

128942-Thumbnail Image.png

21st Century Community Outreach and Collection Development: ASU Chicano/a Research Collection

Description

Mexicans and Mexican Americans have resided in Arizona since the early 16th century. Their history, however, is severely under-documented in the state’s archival repositories. As of 2012, this community is

Mexicans and Mexican Americans have resided in Arizona since the early 16th century. Their history, however, is severely under-documented in the state’s archival repositories. As of 2012, this community is represented in a mere 1-2% of the state’s known archival holdings, and 98% of such documentation is held at Arizona State University’s Chicano/a Research Collection (CRC). This article provides a historical review of the CRC’s establishment in 1970 and how its founding Curator, Dr. Christine Marín, transformed a small circulating book collection into Arizona’s largest repository for Mexican American history. It goes on to examine how the CRC’s sitting Archivist is using social media in tandem with a community-based workshop, bilingual promotional materials and finding aids, and description of unprocessed collections as community outreach and collection development tools in order to remedy the under-documentation of Mexican American history in Arizona. We argue that augmenting traditional archival field collecting methods with these strategies enables the CRC to build a more robust relationship with Arizona’s Mexican American community, allows us to continue expanding our archival holdings, and serves as an example for other repositories seeking to enhance their documentation of marginalized communities.

Contributors

Created

Date Created
  • 2017-01-27

128945-Thumbnail Image.png

Daytime cooling efficiency and diurnal energy balance in Phoenix, Arizona, USA

Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

Contributors

Agent

Created

Date Created
  • 2012-08-12