This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13
128952-Thumbnail Image.png
Description

Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing

Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing Arizona to supply most of the country's winter lettuce and vegetables. In addition to Phoenix and Tucson, cities including El Paso, Las Vegas, Los Angeles, and San Diego rely on Arizona for several types of agricultural products such as animal feed and livestock, meaning that disruptions to Arizona's agriculture also disrupt food supply chains to at least six major cities.

Arizona's predominately irrigated agriculture relies on water imported through an energy intensive process from water-stressed regions. Most irrigation in Arizona is electricity powered, so failures in energy or water systems can cascade to the food system, creating a food-energy-water (FEW) nexus of vulnerability. We construct a dynamic simulation model of the FEW nexus in Arizona to assess the potential impacts of increasing temperatures and disruptions to energy and water supplies on crop irrigation requirements, on-farm energy use, and yield.

We use this model to identify critical points of intersection between energy, water, and agricultural systems and quantify expected increases in resource use and yield loss. Our model is based on threshold temperatures of crops, USDA and US Geological Survey data, Arizona crop budgets, and region-specific literature. We predict that temperature increase above the baseline could decrease yields by up to 12.2% per 1 °C for major Arizona crops and require increased irrigation of about 2.6% per 1 °C. Response to drought varies widely based on crop and phenophase, so we estimate irrigation interruption effects through scenario analysis. We provide an overview of potential adaptation measures farmers can take, and barriers to implementation.

ContributorsBerardy, Andrew (Author) / Chester, Mikhail Vin (Author)
Created2017-02-28