This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

128952-Thumbnail Image.png
Description

Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing

Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing Arizona to supply most of the country's winter lettuce and vegetables. In addition to Phoenix and Tucson, cities including El Paso, Las Vegas, Los Angeles, and San Diego rely on Arizona for several types of agricultural products such as animal feed and livestock, meaning that disruptions to Arizona's agriculture also disrupt food supply chains to at least six major cities.

Arizona's predominately irrigated agriculture relies on water imported through an energy intensive process from water-stressed regions. Most irrigation in Arizona is electricity powered, so failures in energy or water systems can cascade to the food system, creating a food-energy-water (FEW) nexus of vulnerability. We construct a dynamic simulation model of the FEW nexus in Arizona to assess the potential impacts of increasing temperatures and disruptions to energy and water supplies on crop irrigation requirements, on-farm energy use, and yield.

We use this model to identify critical points of intersection between energy, water, and agricultural systems and quantify expected increases in resource use and yield loss. Our model is based on threshold temperatures of crops, USDA and US Geological Survey data, Arizona crop budgets, and region-specific literature. We predict that temperature increase above the baseline could decrease yields by up to 12.2% per 1 °C for major Arizona crops and require increased irrigation of about 2.6% per 1 °C. Response to drought varies widely based on crop and phenophase, so we estimate irrigation interruption effects through scenario analysis. We provide an overview of potential adaptation measures farmers can take, and barriers to implementation.

ContributorsBerardy, Andrew (Author) / Chester, Mikhail Vin (Author)
Created2017-02-28
127818-Thumbnail Image.png
Description

This chapter is not a guide to embodied thinking, but rather a critical call to action. It highlights the deep history of embodied practice within the fields of dance and somatics, and outlines the value of embodied thinking within human-computer interaction (HCI) design and, more specifically, wearable technology (WT) design.

This chapter is not a guide to embodied thinking, but rather a critical call to action. It highlights the deep history of embodied practice within the fields of dance and somatics, and outlines the value of embodied thinking within human-computer interaction (HCI) design and, more specifically, wearable technology (WT) design. What this chapter does not do is provide a guide or framework for embodied practice. As a practitioner and scholar grounded in the fields of dance and somatics, I argue that a guide to embodiment cannot be written in a book. To fully understand embodied thinking, one must act, move, and do. Terms such as embodiment and embodied thinking are often discussed and analyzed in writing; but if the purpose is to learn how to engage in embodied thinking, then the answers will not come from a text. The answers come from movement-based exploration, active trial-and-error, and improvisation practices crafted to cultivate physical attunement to one's own body. To this end, my "call to action" is for the reader to move beyond a text-based understanding of embodiment to active engagement in embodied methodologies. Only then, I argue, can one understand how to apply embodied thinking to a design process.

ContributorsRajko, Jessica (Author)
Created2018