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ABSTRACT 

   

Among the major applications of pervaporation membrane processes, 

organic separation from organic/water mixtures is becoming increasingly 

important. The polydimethylsiloxane (PDMS) is among the most interesting and 

promising membranes and has been extensively investigated. PDMS is an 

"organicelastomeric material, often referred to as "silicone rubber", exhibiting 

excellent film-forming ability, thermal stability, chemical and physiological 

inertness. In this thesis incorporation of nanosilicalite-1 particles into a PDMS 

matrix and effect of particle loading and temperature variation on membrane 

performance was studied. A strong influence of zeolite was found on the 

pervaporation of alcohol/water mixtures using filled PDMS membranes. The 

mixed matrix membrane showed high separation factor at higher zeolite loading 

and high flux at higher temperature. 
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Chapter 1 

INTRODUCTION 

1.1 MEMBRANE SEPARATION PROCESSES 

 

 To think of membranes is generally to think of separations. The 

majority of membranes today are applied as semipermeable barrier layers which 

permit certain components of solutions or suspensions to permeate more rapidly 

than others. The absolute rate at which a permeant traverse a membrane is known 

as flux, and the rate at which two different species permeate relative to one 

another is selectivity. Flux and selectivity are the primary, but by no means the 

only, determinants of the practicality of any membrane separation.  

 Various criteria are used to classify membranes including the 

morphology of the membrane and the separation process to which it is applied. 

The membranes discussed in this thesis are free-standing dense polymeric films 

and supported nanocomposite membranes with nanosized zeolite particles 

homogeneously distributed in a continuous polymeric film. Transport across the 

membrane occurs because of a chemical potential gradient. According to solution-

diffusion mechanism, the components of the feed mixture traverse through the 

membrane by dissolving in the membrane at the feed side, diffusing through the 

film and desorbing at the permeate side (Mulder & Smolders, 1984; Mulder, 

Franken, & Smolders, 1985; Wijmans & Baker, 1995).(Mulder & Smolders, 

1984)(Mulder & Smolders, 1984) 

 Solution-diffusion membranes are used in various membrane 

processes including gas separation, vapour permeation, reverse osmosis, and 
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pervaporation. For pervaporation the feed consists of a liquid mixture and at the 

permeate side the vapour pressure of the components is kept low by vacuum or a 

sweep gas. As the separation is based on differences in solubility and diffusivity 

of the components in the membrane, it is possible to separate azeotropic mixtures 

by means of pervaporation without using additives (R. Y. M. Huang, 1991). 

 To be useful in industrial separation processes, a membrane must 

exhibit at least the following characteristics (Pinnau & Freeman, 2000): 

 High flux and  selectivity 

 Mechanical stability 

 Tolerance to feed components (fouling resistance) 

 Tolerance to temperature variations 

 Manufacturing reproducibility 

 Low manufacturing cost 

 Ability to be packaged into high surface area modules 

 Higher flux at a given driving force requires low cross-sectional 

membrane area; this also canreduce the capital cost of a membrane system. The 

selectivity determines the separation capability. Membranes with higher 

selectivity are desired because higher product purity can be achieved in a single-

stage of the separation process. For solution-diffusion membranes this is difficult 

to achieve because a highly permeable polymer generally has low selectivity and 

polymer with high selectivity has low permeability.  Extensive effort is spent on 

the synthesis and investigation of new polymers and polymer blends as membrane 

material (S. Chen, Yu, Lin, Chang, & Liou, 2001; Ohya, Matsumoto, Negishi, 



  3 

Hino, & Choi, 1992; Shieh & Huang, 1998; D. Wang, Lin, Wu, & Lai, 1997) for 

pervaporation of ethanol/water mixtures.  

 In this thesis we study the effect of incorporation of nano-sized 

silicalite molecular sieves into dense polymeric. From literature it is known that 

this can lead to increase in both flux and selectivity of polymeric membranes 

(Bowen, Noble, & Falconer, 2004; X. Chen, Ping, & Long, 1998; Jia, 

Pleinemann, & Behling, 1992). 

1.1.1 Membrane materials for alcohol recovery  

 

 Various membrane materials have been studied for recovery of 

organic compounds from water by pervaporation. Membranes used for 

pervaporation of ethanol/water mixtures can be categorized as hydrophilic and 

hydrophobic. In case of dehydration, where low concentration of water needs to 

be separated from solvent, hydrophilic membranes are used because they 

preferentially allow water to permeate through. Conversely, when a small amount 

of solvent is required to be removed from a stream of water, hydrophobic 

membranes are used.  

 For dehydration of alcohols, different membrane materials like poly-

vinyl alcohol (PVA), chitosan, psf, polyimide, polyamide, polyaniline, cellulose 

acetate have been tested. Table 1 gives a brief summary of some of the 

hydrophilic materials tested by many researchers. A detailed review on 

membranes for dehydration of solvents was done by Peter D. Chapman et al. 

(Chapman, Oliveira, Livingston, & Li, 2008). 
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Table 1: Dehydration of alcohols using different membrane materials. 

Mixture 

(mass 

ratio) 

Support Separation 

Layer 
 Flux 

(kgm
-

2
h

-1
) 

Temp 

(C) 

Ref. 

EtOH/H2O 

(50:50) 

PVA PVA 100 0.25 45 (R. Y. M. 

Huang, 

1991) 

EtOH/H2O 

(95:5) 

PVA, 

PAAM 

PVA, 

PAAM 

45-

4100 

0.1-

0.06 

75 (Ruckenstein 

& Liang, 

1996) 

EtOH/H2O 

(90:10) 

Chitosan Chitosan 1791 0.472 60 (Ge, Cui, 

Yan, & 

Jiang, 2000) 

EtOH/H2O 

(90:10) 

Chitosan Chitosan 127 0.201 50 (Zhang, Li, 

Fang, & 

Wang, 2007) 

EtOH/H2O 

(90:10) 

PSF/PEG PSF/PEG 325 0.6 25 (Hsu et al., 

2003) 

EtOH/H2O 

(90:10) 

PSF PSF 600 0.7-0.9 25 (S. Chen et 

al., 2001) 

EtOH/H2O 

(95:5) 

PI-2080 

polyimide 

PI-2080 

polyimide 

900 1 60 (Yanagishita, 

Maejima, 

Kitamoto, & 

Nakane, 

1994) 

EtOH/H2O 

(90:10) 

BAPP BAPP 22 0.27 25 (Y. C. Wang, 

Tsai, Lee, & 

Lai, 2005) 

EtOH/H2O 

(90:10) 

Nylon-4 Nylon-4 4.5 0.35 25 (K. Lee, 

Chen, & Lai, 

1992) 

EtOH/H2O 

(90:10) 

Nylon-4 Nylon-

4/PVA 

13.5 0.42 25 (Y. M. Lee 

& Shin, 

1991)(K. 

Lee et al., 

1992)(K. 

Lee et al., 

1992) 

 

 = separation factor = water/ethanol 

In hydrophobic membranes PDMS remains to be best material for pervaporation 

membranes due to inert nature, thermal stability and good film forming tendency. 
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Table 2. gives a brief summary of some of the hydrophobic materials tested. A 

detailed review on pervaporation from fermentation broths has been done by 

Leland M. Vane (Vane, 2005). 

Table 2: Pervaporation of alcohols through hydrophobic membrane 

materials 

Polymer Tem

p (C) 
 Notes Ref 

PTMSP 30 15.1

-

19.9 

6wt% EtOH, 14-43 m 

thick 

(Volkov et 

al., 2004) 

Poly(methyl Phenyl 

siloxane) 

50 11.7 4.1 wt% EtOH (X. Chen et 

al., 1998) 

PTMSP/PDMS graft 

copolymer 

30 28.3 Max  at 12 mol% 

PDMS, 7 wt% EtOH 

(Nagase, 

Ishihara, & 

Matsui, 

1990) 

Plasma polymerized 

silane 

25 18 4 wt% EtOH, polymer 

of 

hexamethyltrisiloxane 

(Kashiwagi

, Okabe, & 

Okita, 

1988) 

Polysiloxaneimide 

ODMS/PMDA/MDM

S 

40 10.6 10 wt% EtOH, 

1.5:2:0.5 equivalents 

of 

ODMS:PMDA:MDM

S 

(Krea, 

Roizard, 

Moulai-

Mostefa, & 

Sacco, 

2004) 

 = separation factor = EtOH/water 

PTMSP = poly(1-(trimethylsilyl)-1-propyne). 

ODMS = ,-(bisaminopropyl) dimethylsiloxane oligomer. 

PMDA = 1,2,4,5-benzenetetracarboxylic dianhydride. 

MDMS = 1,3-bis(3-aminopropyl) tetramethyldisiloxane. 

1.1.2 Membrane performance: Flux and Selectivity 

 

 Performance of a membrane is determined by flux and selectivity. 

The flux is greatly influenced by driving force and is inversely proportional to the 

membrane thickness. To compare membrane properties the following definitions 

and units will be used. 
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- Separation factor ij for a pervaporation process is defined as  

     
(
  

  
)        

(
  

  
)    

       1.1 

- Flux for a pervaporation membrane is expressed in gm hr
-1

m
-2

. To correct 

for the membrane thickness the flux will be normalized to a fixed 

membrane thickness. 

 J = (weight of permeate)/(membrane surface area * no. of hours of 

operation) 

- Membrane selectivity (ij), defined as the ratio of the permeabilities of 

components i and j through the membrane: 

 ij = Pi/Pj
 

 
where, P is the permeability of the component in kmol m

-1
 s

-1
 kPa

-1
 

1.2 ZOELITES 

 1.2.1 Definition, Structure and Applications 

 Zeolites are inorganic crystalline solids with small pores running 

throughout the solid. They are aluminosilicate framework structures made from 

sharing corners of a SiO4 and AlO4 tetrahedron and can be represented by the 

empirical formula M2/nO.Al2O3.xSiO2.yH2O. In this formula n is the cation 

valence. As Al has a valence 3 and Si has a valence 4, incorporation of alumina in 

a silica lattice will lead to a negative framework charge which is compensated by 

a non-framework cation. The factor x is > = 2 because every alumina tetrahedral 

has to be surrounded by a silica tetrathedra. The factor y depends on the Si/Al 

ratio, the pore volume etc. The factor y depends on the Si/Al ratio, the pore 
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volume etc. As the Si/Al ratio increases, the cation content decreases, the thermal 

stability increases and the surface selectivity changes from hydrophilic to 

hydrophobic (Breck, 1975). 

 Structurally, zeolites are built of primary and secondary building 

units. Primary unit is SiO4 or AlO4 tetrahedron. Si or Al atom sits at the center of 

the tetrahedron with 4 oxygen atoms covalently bonded to the centered Si or Al 

atom also called the T-atom. From this primary unit, a number of secondary 

building units can be built by a linkage through the oxygen atom covalent 

bonding, which is called an oxygen bridge. The secondary building units are 

featured by simple geometric shapes as shown in Figure 1. 
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Primary Unit  

 

Secondary Units 

 

Figure 1: Schematic representation of building units for zeolites (The 

composition of quartz.). 
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 We will be focusing on nanoparticles of silicalite-1 (the silica 

version of the MFI zeolite structure) in this thesis. Structure for the MFI zeolite 

structure is given in Figure 2. Silicalite-1 was the first aluminum free zeolite 

synthesized by Flanigen et al. (Flanigen E.M., Bennett M.J., Grose R.W., Cohen 

J.P., & Patton R.L., 1978). 

 

Figure 2: Structure of silicalite-1 

In brief, zeolites have the following unique properties. 

 Acidity and basicity  

 Ion-exchange ability 

 Shape selective ability 

 High surface are 

 Micropores 

 Structural stability 

 Thermal stability up to 1000 
0
C 
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Because of these unique properties zeolites have found many applications. Their 

major applications are: 

 Ion-exchangers: Making detergent 

 Adsorbents: Ethylene recovery, catalytic converters, separating O2 and N2 from 

air, environmental control and protection 

 Catalysts: catalytic cracking, catalytic reforming, lube waxing, hydrocracking, 

isomerization, oligomerization, hydration of olefins etc. 

1.2.2 Transport through zeolite filled membranes 

 

  Te Hennepe (te Hennepe, Bargeman, Mulder, & Smolders, 1987) 

derived a model to describe permeation of ethanol/water through zeolite filled 

membrane. It is easy to describe mass transport in a composite consisting of 

laminate but for a dispersed phase in continuum, factors like particle size, shape 

and orientation greatly influence the overall mass transport. In this thesis we 

discuss two transport models. 

 Geometrical mean model 

 This is a very simple approach and is expressed by equation 1.2. 

 ln(Pi) = z ln(Pz) + (1-z) ln(Pr)      1.2 

 where: 

 Pi     permeability of the composite membrane (Barrer) 

Pz     zeolite permeability (Barrer) 

 

Pr     rubber permeability (Barrer) 

 

z     volume fraction zeolite 
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 Model of te Hennepe 

 Te Hennepe et al (Hennepe, Smolders, Bargeman, & Mulder, 1991) calculated the 

overall resistance in a zeolite filled membrane by combining the resistances in the 

membrane (in parallel and in series) in the same way as is done in electrical 

circuits. This leads to equation 1.3 

 Pi = 1/ ( (1-z
1/3

)/ Pr + 3/2 z,i
1/3

/ Pr(1-z) + 3/2 Pz z )   1.3 

  In the te Hennepe model, it is assumed that the permeabilities of the 

two phases are independent of each other. Also Pr and Pz are overall parameters 

and independent of their position in the membrane. This assumption is valid for 

the permeation of components which have a low interaction with the polymer. 

However, this model is not correct for three reasons. 

  First, it can be seen from equation 1.3 that if the zeolite permeability 

is equal to the polymer permeability, the overall permeability of the membrane is 

still a function of the volume fraction of filler. This is due to the factor 3/2 which 

was introduced as tortuosity factor. The physical meaning of this factor is that if a 

molecule cannot pass through a zeolite cube, the path length is assumed to be 3/2 

times larger compared to the path length of a molecule that can pass through the 

zeolite.  

  Second, one assumption in derivation of the model is not correct. To 

calculate the area fraction in a plane in the membrane that is occupied by zeolite, 

te Hennepe refers to Nielsen (Nielsen L.E., 1967). Nielsen assumed that each 

zeolite particle is surrounded by an equal amount of polymer. In the model of te 

Hennepe this condition is not met. Therefore equation 1.4 is more correct. 
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 Pi = 1/ ( (1-z
1/3

)/ Pr + z,i
1/3

/ Pr(1-z
2/3

) + Pz z 
2/3

)    1.4 

  Third, the model is not able to fit all experimental results 

satisfactorily.  

1.3 MIXED MATRIX MEMBRANES  

 

 One of the major challenges facing membrane material design is achieving higher 

selectivity. Zeolites can overcome this challenge, but not in an economical way. 

Ceramic, glass, carbon and zeoliltic membranes cost around one to three 

magnitude more per unit area of membrane in comparison to polymeric 

membranes (Vane, 2005).  

  Mixed matrix membranes (MMM) are a blend of inorganic (often 

molecular sieves) within a continuous polymer matrix. The continuous bulk phase 

(phase A) is typically a polymer; and the dispersed phase (phase B) represents the 

inorganic particles, which may be zeolite, carbon molecular sieves, or nano-size 

particles. Mixed matrix membranes (MMMs) combine the processability of the 

polymer phase with superior transport properties of the molecular sieves.  

  

Figure 3: Schematic of a mixed matrix membrane (MMM)  
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1.3.1 Background 

 

 To form a successful mixed matrix membrane one has to choose 

polymers that can maintain flexibility during membrane formation and have a 

favorable interaction with the sieve. However this can be a big challenge since 

flexible polymers lack mechanical stability under high pressure and even 

moderate temperatures. Also having a large zeolite loading can create pinholes in 

membranes due to the formation of agglomerates thereby reducing membranes 

efficiency(Vankelecom, Depre, De Beukelaer, & Uytterhoeven, 1995).  

 Investigation of MMM‟s for gas separation was first reported in the 

1970s by Paul and Kemp (Paul DR, 1973).  In this seminal work it was found that 

addition of 5A zeolite into rubbery polymer PDMS caused very large increase in 

the diffusion time lag but had only minor effects on the steady-state diffusion. 

Researchers at Universal Oil Products (UOP) were the first to report that mixed 

matrix systems of polymer/adsorbent might yield superior separation performance 

than pure polymeric system (Kulprathipanja S, Neuzil RW, Li NN, 1988). 

 1.3.2 Factors affecting MMM’s performance 

  Performance of MMM‟s is not a simple addition of the intrinsic 

properties of individual phases. Various variables such as polymer-filler 

interaction, filler size, filler agglomeration may seriously affect MMM 

performance thus making it difficult to understand. Currently, the major concerns 

in MMM research are a suitable combination of polymers and particles, the 

physical properties of the inorganic fillers and the particle/polymer interface 

morphology and chemistry. 



  14 

 1.3.2.1 Polymer/Inorganic filler combination 

  Selection of appropriate inorganic filler was the major concern in the 

early development of MMM‟s, however it has been found that the choice of a 

suitable polymer as the matrix is also important in determining the MMM 

performance.  

  In case of non-porous fumed silica filled glassy polymer (PMP, poly 

1-trimethylsilyl-1-propyne (PTMSP)) for n-butane/methane separation, a 

significant increase in n-butane permeability and selectivity was observed with 

fumed silica addition for PMP. In contrast, the hydrocarbon selective PTMSP 

becomes less selective for hydrocarbons with increasing fumed silica loading 

(Chung, Jiang, Li, & Kulprathipanja, 2007). This can be attributed to extremely 

microporous nature, which, when augmented by fumed silica addition, led to an 

increasing influence of Knudsen flow. 

 1.3.2.2 Particle Size 

  To date, most of the studies reported on polymer/inorganic filler 

MMMs use large particles, with particle diameters on the order of 10-100s of 

microns. Smaller particles would increase the polymer/particle interface area and 

possibly increasing the membrane separation performance. Also, smaller particles 

would enable formation of thinner MMMs. 

  No particular studies have been done to study the effect of particle 

size on ethanol/water separations but comparison of studies done by Moermans 

(Moermans et al., 2000)(Moermans B, De Beuckelaer W, Vankelecom IFJ, 

Ravishankar R, Martens JA, 2000)(Moermans B, De Beuckelaer W, Vankelecom 
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IFJ, Ravishankar R, Martens JA, 2000), Jia Meng-Dong (Jia et al., 1992) and  

Leland M (Vane, Namboodiri, & Bowen, 2008). Vane shows that smaller zeolite 

particle offers a better performance with lower zeolite loadings. 

  S Birgul et. al.(Tantekin-Ersolmaz et al., 2000) reported the effect of 

different particle sizes of silicalite in PDMS for CO2/N2, CO2/O2 and O2/N2 

separation. It was shown that the permeability of MMMs decrease with 

decreasing particle size of silicalite. This may be due to the enhanced 

polymer/zeolite contact. Thus it can be concluded that smaller particles offer more 

polymer/particle interfacial area. 

 1.3.2.3 Particle agglomeration and sedimentation 

  Due to differing physical properties and densities of zeolite and 

polymers, precipitation of zeolite from the casting solution may occur during the 

MMM preparation, resulting in formation of inhomogeneous zeolite and polymer 

phases in the filled membrane. The agglomeration of zeolites can cause pinholes 

between different zeolite particles which possibly cannot be filled by polymer 

segments; resulting in the formation of non-selective defects in the MMM. Zeolite 

agglomeration and possible pinhole formation escalates with increasing zeolite 

loading in the initial membrane casting solution. 

  Few ways to avoid particle agglomeration are (1) preparation of high 

concentration polymer solutions to increase the viscosity, (2) slowing particle 

sedimentation or form membrane rapidly, so that the particles do not have enough 

time to precipitate or used ultra-fine crystallites (< 0.5 micron) with a consequent 

reduction in the sedimentation rate (Chung et al., 2007). 
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  In some cases, instead of sedimentation, particles may move to the 

membrane surface and agglomerate. It is believed that agglomeration at the 

surface is the result of convection cells that form during casting of films and often 

occurs with membranes formed at high temperatures. The formation of 

convection cells in liquids that are heated or cooled can be due to instabilities 

driven by buoyancy or surface tension (Pearson, 1958).  

   

  

Figure 4: Development of the instability in films cast at elevated temperature 

(image reproduced from (Mahajan, Burns, Schaeffer, & Koros, 2002)) 

  The schematic for the formation of instability at the surface is shown 

in Figure 4. The film is at uniform thickness initially, and the instability sets in 

when a small disturbance causes a point of localized heating on the surface. The 

result is a decreased surface tension at this point that causes a surface tension 

gradient to form which causes a horizontal fluid motion away from the point of 

local heating. Conservation of mass induces bulk fluid flow toward the surface at 

point of local heating. Due to temperature gradient, the fluid from below is 

warmer than the fluid it is replacing which further increases the temperature at the 

point of local heating causing the formation of a self-propagating instability. This 
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instability can continue if convective motion can overcome viscous forces. 

Molecular sieves can then become trapped at the top surface, which maintains a 

higher viscosity than the lower bulk fluid. 

  Scaling analysis of the above problem was done by Pearson 

(Pearson, 1958). He described a dimensionless quantity, Marangoni number 

which is the ratio of surface tension forces to viscous forces. Marangoni number 

is defined by the following formula: 

 Ma = (ð/ ðT) * h
2
 / i              

 where, ð/ ðT is the surface tension gradient with temperature,  is the 

temperature gradient, h is the thickness of the film,  is the viscosity, and i is the 

thermal diffusivity. Critical Marangoni number for instability to occur was found 

to be 79.6 (Pearson, 1958).   

  Now as the physical meaning of the problem is clear, it is possible to 

change experimental parameters to eliminate the instability that drives the 

convective cell formation. The obvious thing is to lower the Marangoni number. 

Decreasing the film thickness is the best way; but a minimum thickness needs to 

be maintained to retain mechanical integrity and adequate dispersion of zeolites. 

  Alternate approach is to examine the onset of the instability. Since 

heating a film from below causes warmer fluid to flow to the localized heating 

point, which maintains the instability, if the film was heated from top, the 

temperature gradients would be reversed. The arising instabilities wouldn‟t 

propagate because the colder fluid from the bulk would replace the fluid at the 
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localized heating point thus reversing the surface tension gradient (Pearson, 

1958). 

1.3.3 Interface Morphologies 

 

   Interface morphology is a critical determinant of the overall 

performance of MMM. Figure 5 shows a schematic diagram of various nano-scale 

structures at the polymer/particle interface. Case 1 is an ideal morphology, 

corresponding to the ideal Maxwell model prediction (Krishna & Wesselingh, 

1997). Case 2 shows formation of interface voids due to polymer chains 

detachment from zeolite surface. Case 3 shows that the polymer chains in direct 

contact with zeolite can be more rigidified than the bulk polymer chains. Case 4 

displays partial pore blockage of the zeolite surface by the rigidified polymer 

chains. 

   First attempt to combine zeolites with a variety of organic polymers 

was done by Barrer and James (Barrer & James, 1960). They demonstrated that 

adhesion problems occurred at the polymer/zeolite interface when preparing 

mixtures of a finely powdered polymer and zeolite crystals. This could result in 

interface voids leading to deteriorated performance as molecules take this non-

selective and less resistant by-pass instead of passing through pores in the 

particle. 

   The preparation of zeolite-filled membranes from a glassy or rubbery 

polymer by classic dissolution-casting-evaporation method results in a three-

phase membrane: zeolite, polymer, and interface voids. It was hypothesized that 
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the huge stress occurring during the solvent evaporation step led to the 

detachment of the polymer from the zeolite external surface. Other possible 

reasons for interface voids formation include repulsive force between polymer 

and fillers and different thermal expansion coefficients for polymer and particles 

(Li, Chung, Cao, & Kulprathipanja, 2005). 

   

Figure 5: Schematic diagram of various nanoscale morphology of the mixed 

matrix membrane; image reproduced from (Chung et al., 2007) 

 In the case of formation of intimate contact between polymer and 

particles, situations like polymer chain rigidification (case 3) and pore blockage 

(case 4) might occur (as see in Figure 5). The mobility of polymer chains in the 

region directly contacting the particles can be inhibited relative to that for the bulk 

polymer due to an effect called rigidification. 

 Rigidification enhances the diffusivity selectivity due to lower 

mobility of polymer chains; that is, the diffusivity difference between larger and 
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smaller gas molecules is increased. Consequently, higher selectivity in the vicinity 

of the particles may be obtained due to decreased gas permeability. Glass 

transition temperature Tg can provide a good estimate of the flexibility of the 

polymer chains. Higher Tg means higher rigidity and vice (Li et al., 2005; 

Mahajan et al., 2002). 

 For MMMs with porous fillers, pore blockage by the polymer chains 

on the filler surface may occur. Depending on the pore size of fillers, the polymer 

chain can fill the pores in various degrees. The zeolite could be completely 

excluded from the transport process due to total pore filling thereby making no 

difference in performance or on the other hand, the blockage may narrow a part of 

pores leading to improved separation due to shape/size selectivity. 

 In effect, in MMMs with porous inorganic fillers, pore blockage is 

often accompanied by polymer rigidification; and there is no experimental design 

to distinguish between the influence of these two factors (Mahajan et al., 2002). 

1.3.3.1 Optimization of Interface Morphologies 

 

 Interface voids 

  Choosing a polymer with low Tg i.e. flexible backbone at room 

temperature or membrane formation temperature should significantly reduce 

dewetting from the zeolite surface. Silicone rubber has a low Tg and is flexible at 

room temperature. Since silicone rubber is in rubbery state at room temperature it 

can surround the particles more easily. This is why it is the most popular polymer 

for preparing MMMs (Vane, 2005). 
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  An attractive force between the particle and the polymer can 

improve the mophology of MMM. A qualitative characterization of interaction 

between polymer and zeolite was made by Mahajan et al. (Mahajan et al., 2002). 

Shouliang Yi (Yi, Su, & Wan, 2010) and Haoli Zhou (Zhou, Su, Chen, Yi, & 

Wan, 2010) modified the external surface of the zeolites using coupling agents 

vinyltriethoxysilane (VTES) and vinyltrimethoxysilane (VTMS) respectively. 

Surface modification of the zeolites showed great improvement in MMM 

structure but no significant improvement in performance was observed. 

Pore Blockage 

 Since pore blockage by polymer chains can completely eliminate the 

function of zeolites, investigations are necessary to eliminate this effect. Li et al. 

used (3-amino)-diethoxymethyl silane (APDEMS) as coupling agent to modify 

zeolite surface for MMMs. This modification showed improved performance for 

gas permeability and gas selectivity. 

1.4 PERVAPORATION 

1.4.1 Introduction 

 

 Liquid mixtures can be separated by partial vaporization through a 

non-porous permselective membrane. This process, which was originally called 

„liquid permeation‟ has subsequently been termed „pervaporation‟ in order to 

emphasize the fact that the permeate undergoes a phase change, from liquid to 

vapor, during its transport through the membrane. According to this process 

(Figure 6), the liquid feed-mixture is circulated in contact with the membrane, and 
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the permeate is evolved in the vapor state from the opposite side of the 

membrane, which is kept under low pressure. 

 

Figure 6: Schematic of a pervaporation process (image reproduced from (Vane, 

2005)) 

 The transport of the permeate through the non-porous, selective film involves 

three successive steps, namely: 

1) Selective sorption of the feed components in the upstream layer of the 

membrane 

2) Selective diffusion of the components through the unevenly swollen non-

porous membrane 

3) Selective desorption in the vapor phase on the permeate side 

1.4.2 Thermodynamic Principles Of Pervaporation 

1.4.2.1 Single component and binary mixture transport 

 

 In pervaporation the vapour pressure at the permeate side is very 

low, or much lower than the saturation pressure, which means that the activity a‟‟ 
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= (pi / po) is very low or almost zero. For a pure liquid the activity on the 

upstream side is unity (a‟ =1) assuming that the interfaces of the membrane are in 

thermodynamic equilibrium with the upstream and downstream phase. Therefore 

the activity of a component in the membrane changes from a=1 to a  0 going 

from upstream side to the downstream side. 

 In the case of a pure liquid the activity of liquid just inside the 

membrane is always one (a=1) and independent of the polymer used. The 

concentration however is not. The concentration of liquid inside the membrane is 

strongly dependent on the interaction between the liquid and polymer. In addition 

the permeation rate through the membrane is strongly dependent on the 

concentration of the liquid inside the membrane. 

For a single component i the flux Ji is equal to the product of concentration and 

linear velocity, where the velocity is the product of mobility and driving force. 

                  
  

  
       1.5

 Using ideal conditions (diffusion coefficient independent of concentration) 

eq 1.5 can be transformed to the Fickian equation. 

         ( ) 
   

  
        1.6 

In practical situations though the diffusion coefficient of low molecular 

components in polymers is mostly concentration dependent, and especially in 

pervaporation the concentration changes much across the membrane. Therefore, 

often an exponential relation is used to express the concentration dependence of 

the diffusion coefficient; 
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Di = Do,i exp(i.ci)        1.7 

Where Do,i is the coefficient in the membrane at zero concentration and i 

 is the plasticizing constant expressing the influence of the plasticizing action of 

the liquid on the segmental montions. 

 Integratiion of eq. 1.7 across the membrane with the boundary conditions 

x = 0   c = co
m

 

x = 1  c = 0 

gives the following equation for the flux 

Ji = [ Do,i / i] [ exp (i co,i) – 1]      1.8 

Where  x is membrane thickness 

co
m 

is the concentration of the pure liquid. 

From eq 1.8 it can be seen that if the concentration in the membrane increases, the 

permeation rate increases. In other words, for single liquid transport the 

permeation rate is solely determined by the interaction between liquid and 

polymer.  

Binary Mixtures  

 Transport of mixtures through polymeric membrane is complex 

because the systems are highly interactive. Interaction of the individual permeants 

with the polymer along with the mutual interaction of the permeants effects the 

transport through the membrane. Also for binary liquid mixture consisiting of 

component 1 and 2, the flux can be described in terms of solubility and 

diffusivity. 
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 The solubility of component 1 in the membrane is not only 

determined by component 1 but also by component 2. Also the diffusivity of 

component 1 through the membrane is influenced by the diffusivity of other 

component because of flow coupling (te Hennepe, Boswerger, Bargeman, 

Mulder, & Smolders, 1994). Therefore two phenomena have to be distinguished 

in multi-component transport 

1) Flow coupling 

2) Thermodynamic interaction leading to preferential sorption 

Flow coupling is described through linear non-equlibrium thermodynamics. For a 

binary mixture the following equations are given; 

J1 = L11 
  

  
 + L12 

  

  
         1.9 

J2 = L21 
  

  
 + L22 

  

  
         1.10 

First term on the right side of eq. 1.9 described the flux of component 1 due to its 

own gradient and the second term of this equation describes the flux of 

component 1due to the gradient of component 2. This second term describes the 

coupling effect.  

 Estimation and measurement of coupling effects is very difficult. 

The flow or selective flow is not only determined by flow coupling but also by 

thermodynamic interaction. The flux of a component of a binary mixture can be 

state as; 

J = f [(flow coupling),(thermodynamic interaction)]    1.11 
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 In this section the focus is on the thermodynamic interaction. 

Considering the thermodynamics in relation to pervaporation there is a difference 

between a ternary system (a binary liquid mixture and polymer) and a binary 

system (liquid and polymer) because in the former case not only the amount of 

liquid in the polymer (overall sorption value) is an important parameter but also 

the composition of that liquid mixture in the polymer. Preferential sorption occurs 

when the composition of the binary liquid mixture inside the polymer and in the 

liquid feed mixture are different. If the concentration of a component of a binary 

liquid mixture in the (ternary) polymeric phase is given by  

ui = 
 

   
 = 

 

   
          i=1,2       1.12 

and the concentration in the binary liquid feed mixture by vi then the preferential 

sorption  is given by 

 = u1 –v1 =  v2 – u2        1.13 

1.4.2.2 Solubility aspects of a single component in a polymer 

Flory-Huggins theory (Flory, 1953; Mulder & Smolders, 1984) 

This is a statistical lattice model theory developed by Flory and Huggins. 

According to Flory-Huggins theory the free enthalpy of mixing Gm of a binary 

mixture consisting of solvent and polymer is given by 

Gm = RT (ns ln s + np ln p +  ns p)     1.14 

The first two terms on the right side give the conformational entropy of mixing 

whereas the last represents the enthalpy of mixing. The last term contains the 

binary interaction parameter . If the polymer is completely soluble in the solvent 
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the  parameter will have a value less than 0.5. With decreasing affinity between 

polymer and penetrant the value of  will increase. Differentiation of eq. 1.14 

with respect to ns gives the partial molar free enthalpy or chemical potential s 

ð(Gm)/ðns = s = RT [ lns + (1-Vs/Vp) p +  p
2
 ]    1.15 

when the affinity between penetrant and polymer decreases both  and p will 

increase with the limit as p  1 then   ∞. 

The total change in free enthalpy G is determined by the free enthalpy of mixing 

Gm and elastic free enthalpy Gel. The membrane is a swollen gel or network of 

polymer chains cross linked due to crystalline regions, chain entanglements or van 

der waals interactions. Because of the swelling the chain between the crosslink 

points will be elongated and this causes the networks to exert force to reduce the 

swelling. The expansion of the network is given by the elastic free energy Gel. 

G = Gm + Gel        1.16 

At swelling equilibrium G = 0 and eq 1.17 is obtained 

ln(1-p) +  p + p
2
 + (Vs. ρ/Mc) (p

1/3
 – 0.5p) = 0    1.17 

The last term in eq. 1.17 is the contribution of the elastic free energy. Mc is the 

average molecular weight between two crosslinks. The contribution of the elastic 

term is mainly determined by two parameters, the amount of liquid in the polymer 

s and the molecular weight between the crosslinks Mc. 

The elastic term has significance only when the volume fraction of liquid inside 

the polymer is high or the Mc is low. For pervaporation the swelling value has to 

be low otherwise the selectivity will drop. Generally the volume fraction of liquid 
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inside the polymer is less than 0.25 in which case the elastic term can be 

neglected. Therefore, neglecting the elastic term the interaction parameter is given 

by 

 = - [ ln(1-p) + p ] / p
2
       1.18 

As the affinity between polymer and penetrant increases the amount of liquid 

inside the polymer increases and  decreases. 

Solubility parameter theory (Dutta, Ji, & Sikdar, 1996-97) 

This theory is based on the concept of regular solutions i.e. solutions with ideal 

entropy of mixing and non-ideal enthalpy of mixing. In liquids there exist strong 

forces between the molecules and the energy required to break all the bonds 

associated with one of its constituent molecules is called cohesive energy. The 

intermolecular forces contributing to the cohesive energy can be divided into 1) 

nonpolar interactions (dispersion or London forces), 2) polar interactions and 3) 

chemical bonds like hydrogen bonds. The cohesive energy density (CED) is 

defined as the ratio between cohesive energy (-E) and molar volume (V).  

CED = - E / V         1.19 

Cohesive energy is assumed to be equal to the total energy of vapourisation. The 

Hansen solubility parameter () is related to the cohesive energy density. 

CED = 2 = Evap / V        1.20 

Hansen assumed that the total energy of vapourisation is the sum of the energies 

required to overcome dispersion forces (Ed), polar interactions (Ep) and to 

break hydrogen bonds (Eh). 

Evap = Ed + Ep + Eh       1.21 
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Combining eq. 1.20 and eq. 1.21 gives 


2
 = 

2
d + 

2
p + 

2
h        1.22 

A good solvent for the polymer will have a solubility parameter value close to that 

of the polymer. 

From the solubility parameter theory the enthalpy of mixing can be described as  

Hm = V 1 2 (1 - 2)
2 

      1.23 

The partial molar enthalpy of mixing can be obtained by differentiating eq. 1.23 

w.r.t n1. 

H1 = ðHm/ðn1  = V1 2 (1 - 2)
2
      1.24 

and according to Flory-Huggins theory the partial molar enthalpy of mixing can 

be obtained from 

H1 = ðHm/ðn1 = RT  2
2
       1.25 

Combining eq. 1.24 and eq. 1.25 gives 

 = (1 - 2)
2
 V1/RT        1.26 

Application of solubility parameter theory has some restrictions. Gm, the free 

enthalpy of mixing, contains two terms, the enthalpy of mixing Hm and the 

entropy of mixing Sm. In solubility parameter approach only the enthalpy term is 

considered. Another point is the that the mixing of polymer and solvent is 

predicted from the properties of the pure components, so specific interactions 

between polymer and solvent involved upon mixing are not included. And lastly, 

this theory cannot be used for ternary systems and values for preferential sorption 

cannot be deduced from this theory. Therefore this theory has minor importance 
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in predicting or defining separation processes. Only for binary systems consisting 

of polymer and penetrant this theory is very convenient. 

1.4.3 Pervaporation Applications 

 Pervaporation is effective to dilute solutions containing trace amounts of 

the target component to be removed. Based on this, hydrophilic membranes are 

used for dehydration of alcohols containing small amounts of water 

and hydrophobic membranes are used for recovery of minor quantity of organics 

from aqueous solutions. 

 Pervaporation is a very mild process thereby making it very effective for 

separation of mixtures which cannot survive the high temperature of distillation. 

 Solvent Dehydration: dehydrating the alcohol/water azeotropes (Hsu et al., 

2003; Mao et al., 2010) 

 Continuous ethanol recovery from yeast fermenters (Vane, 2005). 

 Water removal from condensation reactions to rate of the reaction (IzÃ¡k, 

Mateus, Afonso, & Crespo, 2005). 

 Removal/recovery of organic solvents from industrial waste waters (Moulin, 

Allouane, Latapie, Raufast, & Charbit, 2002). 

 Combining pervaporation membrane system with distillation 

 Hydrophobic flavor compound recovery from aqueous solutions (using 

hydrophobic membranes) 
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Organophilic Pervaporation membranes are used for separating organic-organic 

mixtures, e.g. (Smitha, Suhanya, Sridhar, & Ramakrishna, 2004): 

 Aromatics content reduction in refinery streams 

 Separation of azeotropes 

 Extraction media purification 

 Purification of extraction operation product stream  

 Organic solvents purification 

1.5 RESEARCH OBJECTIVES AND STRUCTURE OF THESIS 

 

 More attention is being paid to production of renewable bio fuels 

after phase-out of methyl t-butyl ether (MTBE) as a fuel oxygenate and the effect 

of non-renewable fossil fuel combustion on earth‟s climate. Starting material for 

the biofuels are agricultural crops, such as sweet sorghum, sugar cane, sugar beet 

etc. Moreover, a variety of biomass materials are available for production of 

liquid biofuels, both intentionally grown for this purpose and that which is a side 

product or waste material from another process. Processing of these materials 

results in aqueous solutions of biofuels, which requires further purification or 

concentration. The most commonly used methods for the dehydration of alcohols 

are distillation, molecular sieve adsorption, extraction and pervaporation. 

However, for dilute ethanol-water solutions, it is desirable to develop ethanol-

selective membranes because it is more effective to remove the minor component 

from the aqueous solutions (Cooper, 1982; Schultz, 1980). 
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 Membrane separation processes provide several advantages over 

other separation techniques, including energy efficiency and easiness of use. 

However, the membrane processes reported in literature to date do not exhibit the 

high flux, selectivity and stability necessary to make them a viable process. Most 

of the porous fillers reported up to now have particle sizes in the micron range. As 

a result, the minimal membrane thickness of the composite membranes was 

higher than the unfilled membranes and the absolute fluxes remained low. 

 The improved adsorption of ethanol by nanosilicalite-1 makes 

MMM promising for aqueous ethanol/water mixtures. This thesis presents a 

research on incorporation of nanosized silicalites into a polymer matrix. Efforts 

have been made to prepare a thin, defect-free, filler polymer layer over a porous 

substrate. The objectives are: 

(1) Study the effect of particle loading on the membrane performance 

(2) Study the effect of temperature variation on the membrane performance   

This thesis consists of two parts. Chapter 2 focuses on the synthesis of free 

standing PDMS membranes and studying the effect of feed concentration on the 

membrane performance. Chapter 3 focuses on the preparation of mixed matrix 

membranes by dip-coating. Characterization and performance of each membrane 

is discussed. Finally, Chapter 4 presents conclusions and recommendations for 

future work. 
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Chapter 2 

FREE STANDING PDMS MEMBRANES FOR PERVAPORATION OF 

ETOH/WATER MIXTURE 

2.1 INTRODUCTION 

Production of renewable biofuels has been receiving increasing attention 

due to reliance on sources like fossil fuels, and its effect on earth‟s climate. 

Ethanol obtained from corn, accounts for the majority of liquid biofuels in United 

States. While corn and other agricultural crops, like sugar cane, sugar beet, 

sorghum, etc, will contribute as the starting material for majority of liquid 

biofuels, other carbon sources need to be found to increase biofuel production. 

Various biomass materials, grown intentionally for this purpose or which is a by-

product of another process are available. In order to make biofuels economical 

separation processes need to be optimized since recovery of biofuels is the most 

energy intensive process. Distillation remains the conventional way for separating 

biofuels today. New processes like pervaporation and membrane distillation can 

play an important role if proper membrane material can be developed for biofuels 

recovery. 

Polydimethylsiloxane (PDMS) is the benchmark material for hydrophobic 

pervaporation membranes for separation of alcohols and VOCs from dilute 

aqueous solutions because it is an elastomeric material which exhibits excellent 

film-forming ability, thermal stability, chemical and physiological inertness. The 

rapid chain segment motion in PDMS leads to a large free volume that favors the 
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diffusion of the permeating molecules. Table 3 gives the performance of some of 

the PDMS membranes mentioned in literature. 

Table 3 Ethanol/water separation factors for PDMS membranes 

Tem

p 

(
0
C) 

EtOH/H2O 

() 

Thick 

(m) 

Notes Ref 

66 14 5‟ 

1.5 wt% EtOH, porous 

PTFE impregnated with 

PDMS in pores 

(Mori & Inaba, 

1990) 

66 10.4 120 1.5 wt% EtOH 
(Mori & Inaba, 

1990) 

30 10.8 100 8 wt% EtOH 
(Ishihara & Matsui, 

1987) 

25 8.8-12.6 25‟ 
Supported liquid 

membrane, 4 wt% EtOH 

(Kashiwagi et al., 

1988) 

35 9 
200-

400 
6 wt% EtOH,<2 torr 

(Moermans et al., 

2000) 

40 8 160 16.5 wt% EtOH 

(Takegami, 

Yamada, & Tsujii, 

1992) 

22.5 7.6 NA 5 wt% EtOH 
(te Hennepe et al., 

1987) 

22 7.3 105 7 wt% EtOH (Jia et al., 1992) 

22 4.4 3‟ 7 wt% EtOH (Jia et al., 1992) 

50 5.3 ~120 4.4 wt% EtOH 
(X. Chen et al., 

1998) 

35 ~5 NA 6 wt% EtOH 
(Vankelecom et al., 

1995) 

40 5 ~225 

0.01 wt% EtOH in 

presence of aroma 

compounds 

(Vankelecom, De 

Beukelaer, & 

Uytterhoeven, 

1997) 

30 8 120 9 wt% EtOH, 6-7 torr 

(Nakao, Saitoh, 

Asakura, Toda, & 

Kimura, 1987)79 

30 6 2.2‟ 
5 wt% EtOH, 5 torr 

vacuum 

(Blume, Wijmans, 

& Baker, 1990) 

25 8.3 100 
10 wt% EtOH, 1.5 torr 

vacuum 
This Work 

‟ = supported on a porous support   

NA = data not available 
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2.2 PERVAPORATION SETUP 

 Pervaporation experiments were conducted with 4 wt% 

ethanol/water mixtures at temperatures from 25 
0
C to 65 

0
C. The membrane was 

sealed in the vertical stainless steel cell (top layer upwards). The liquid feed was 

maintained at atmospheric pressure and contained in the steel reservoir above 

while vacuum was applied to the downstream side. Permeate vapors were caught 

in a liquid nitrogen cold trap and measurements were taken by weighing the trap 

before and after each run. The pervaporation cell was heated using a heating 

jacket ordered from HTS Amptek. 

 

Figure 7: Schematic of a pervaporation setup. Legend: 1-pervaporation cell; 2-

membrane; 3-cold trap; 4-vacuum pump 

 

2.3 EXPERIMENTAL 

 

2.3.1 Equipments 

 

Gas Chromatograph (GC): 

A gas chromatograph is a instrument for chemical analysis of a sample. It 

uses a flow-through narrow tube known as the column, through which different 
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chemical of a sample pass in a gas stream (carrier gas, mobile phase) at different 

rates depending on their various chemical and physical properties and their 

interaction with a specific column filling, called the stationary phase. As the 

chemicals exit the end of the column, they are detected and identified by the 

detector. The function of the stationary phase in the column is to separate 

different components, causing each one to exit the column at a different time 

(retention time).  

The permeate concentration was measured using SRI 8610C gas 

chromatograph (SRI instruments, CA). The 8610C can control up to 16 heated 

zones, three gas sampling valves, and seven gas pressures. Up to six detectors, 

can be mounted simultaneously. The 86100C column oven is temperature 

programmable from ambient to 400 
0
C with unlimited ramps and holds, and fast 

cools down. 

 For our measurements we used the capillary FID GC system. The 30 

meter capillary column can efficiently separate hydrocarbons up to C40+. The on-

colum injector (for 0.53 mm capillary columns) is good for liquid and gas sample 

with high and low boiling analytes. The Split/Splitless injector allows for the use 

of 0.32 mm, 0.25 mm and smaller capillary. 

Vacuum Pump: 

 Edwards A65201903 rotary vane pump was used for pervaporation 

applications. It has an ultimate pressure capacity of 2x10
-3

 mbar and operating 

temperature range of 12-40 
0
C. The permeate vacuum for pervaporation 

experiments was 0.2 kPa. 
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Fourier Transform Infrared Spectroscopy (FTIR): 

 FTIR is a technique used to obtain an infrared spectrum of absorption, 

emission of a solid, liquid or gas. FTIR collects data over a wide spectral range. 

The spectrum can be analyzed to understand the nature of bonds present in the 

solid, liquid or gas. For our experiments Nicolet 4700 FTIR Spectrometer 

obtained from Thermoscientific was used.  

Scanning Electron Microscope (SEM): 

 An SEM images a sample by scanning it with beam of electrons in a raster 

scan pattern. The electrons interact with the atoms of sample producing signals 

containing information about sample‟s surface topography, composition, and 

other properties. Our analysis was done using XL30 ESEM-FEG obtained from 

Philips. It has a resolution up to 2 nm and magnification of 12 to 500,000. 

Furnace: 

 The furnace used for calcining zeolite particles was NeyTech Vulcan 

Benchtop Muffle Furnace obtained from Prosource Scientific. It can heat up to 

1100 
0
C and has single point analog, digital or three-state digital programmable 

control options. 

2.3.2 Free-standing Polydimethylsiloxane Membrane preparation 

 

 The membranes were prepared by solution casting. 4 gm of RTV A 

(monomer) and 0.4 gm of RTV B (cross-linker) was dissolved in 14 gm of 

hexane. The chemicals were bought from Fischer Scientific. The mixture was 

stirred continuously at 500 rpm for 1 hour. After the solution becomes viscous it 
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was used directly for membrane casting. GARDCO casting blade AP-99501001 

was used to cast membranes of 100 micron thickness on glass plate. The glass 

plate was cleaned with the solvent hexane to remove any impurities on the surface 

 

Figure 8: Cross-linking reaction of PDMS 

 The membranes were cured by drying at 25 
0
C for 12 hours followed 

by heating at 70 
0
C for 6 hours and 70 

0
C for 3 hours in 5 in Hg vacuum. The 

whole curing process took place in a vacuum oven. Membrane sheet were peeled 

off from the glass plate, cut in the required dimensions and used in the 

pervaporation cell.   
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2.3.3 Membrane characterization  

 

The chemical structure of the free-standing PDMS membranes was characterized 

by Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy 

(ATR-FTIR).  

 

Figure 9: ATR-FTIR spectrum of a free standing pure PDMS membrane 

  

The PDMS sample exhibited strong peaks at 800-880 cm
-1

 and 1260 cm
-1

. The 

multiple peaks between 700 and 830 cm
-1

 were due to the methyl (CH3 group) 

rocking and the Si-C group (Larkin, 2011; Smith, 1999). The twin peaks at 1000 

and 1030 cm
-1

 originated from the asymmetric stretching of the Si-O-Si and the 

Si-CH3. The other peaks, at 1255 and 3000 cm
-1

, were due to CH3 vibrations 

(Larkin, 2011)(Smith, 1999)(Smith, 1999). 
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2.4 RESULTS AND DISCUSSION 

2.4.1 Influence of feed concentration  

 

 

Figure 10: Effect of feed concentration on PDMS membrane (100 micron 

thickness) 

 Feed composition is an important variable for the selectivity and the total 

permeation flux. Figure 10 shows the effect of the feed ethanol concentration on 

the pervaporation performance of the pure PDMS membranes. With increasing 

ethanol concentration, the permeation fluxes of both ethanol and water increased, 

but the selectivity decreased. 

 In all polymer materials, the diffusion rate decreases as the molecular size 

increases, because large molecules have more interactions with polymer chain 

than small molecules (Xiangli, Chen, Jin, & Xu, 2007). The sorption is the 
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process linking the component concentration in the fluid phase with that in the 

polymer phase. In a binary feed mixture, if the polarity difference between the 

membrane material and the target component is lower than another component, 

the membrane will be more swelled by target component and shows preferential 

selectivity to the target component, to some extent. The less polar the alcohol, the 

higher the membrane affinity towards the pure alcohol. The polarity of ethanol is 

similar to that of cross-linked PDMS than water (Bartels-Caspers, Tusel-Langer, 

& Lichtenthaler, 1992; Jonquières, Roizard, & Lochon, 1994; JonquiÃ¨res & 

Fane, 1997). By increasing the ethanol concentration, ethanol in the feed phase 

had more sorption interaction with cross-linking PDMS thereby causing the 

PDMS to swell. Thus, segments of the rubbery PDMS polymer had more freedom 

of volume and mobility. By increasing the polymer chain mobility, thermal 

motion of these segments enhances the diffusion rate of two permeating 

components. Therefore, the total permeation fluxes of both ethanol and water 

increases as the ethanol concentration increased. Molecular diameters of water 

and ethanol are 0.26 and 0.52 nm, respectively (Shah, Kissick, Ghorpade, 

Hannah, & Bhattacharyya, 2000). As the water molecules are smaller than the 

ethanol molecules, the diffusion rate of water is larger than that of ethanol through 

the membranes. 

 In the pervaporation, the transport process through the membrane mainly 

is dependent on two processes: the solution of permeating components and the 

diffusion of permeating components. In the ethanol-water mixtures, Hofmann et 

al. (Hofmann, Fritz, Ulbrich, & Paul, 1997) found that the sorption process was 
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the decisive step, compared with the diffusion process. That is to say, the 

diffusion process was hindered by the sorption process all the time. By increasing 

the ethanol concentration, the water diffusion effect was greater than that of 

ethanol sorption through the rubbery PDMS membrane, and as a result selectivity 

decreased.  

2.5 CONCLUSION 

 

 Free standing 100 micron thick PDMS membranes were prepared. Effect 

of feed concentration over the performance of membranes was tested and was 

found to agree with literature. An increase in flux and decrease in selectivity was 

observed with increasing feed concentration of ethanol. The flux increased from 

16 gm.hr
-1

.m
-2

 to 32 gm.hr
-1

.m
-2

 as the feed concentration increased from 10 wt% 

EtOH to 40 wt% EtOH in feed. The EtOH/water selectivity decreased from 8.3 to 

1.2 as the feed concentration increased from 10 wt% to 40 wt%. 
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Chapter 3 

SUPPORTED PDMS MEMBRANES FOR PREPARATION OF 

ETHANOL/WATER MIXTURE 

3.1 INTRODUCTION 

 In 1987, Te Hennepe et al. (te Hennepe et al., 1987) published a seminal 

work on ethanol-selective mixed matrix pervaporation membranes made from 

silicalite-filled silicone rubber; these mixed matrix membranes showed significant 

increases in pervaporation flux and selectivity compared to the pure polymer. 

Molecular sieving effects, hydrophobic/hydrophilic properties, and the physical 

cross-linking functions of the zeolites improved the selectivities and stabilities of 

the mixed matrix membrane (Vankelecom, Scheppers, Heus, & Uytterhoeven, 

1994; Vankelecom et al., 1995). Since then, there have been many publications 

about micron-sized zeolite/polydimethylsiloxane mixed matrix membranes for 

pervaporation of alcohol/water solutions (Jia et al., 1992; Vane et al., 2008; 

Vankelecom et al., 1995). These mixed matrix membranes uniformly have higher 

alcohol selectivity ( alcohol/water > 20) than the pure polymer membranes 

(alcohol/water ~ 8). Additionally, all of these membranes had composite films 

greater than two microns in thickness because of the polymer solution processing 

technique with which they were cast.   

 The development of zeolite nano-crystals provides the opportunity to 

fabricate thinner mixed matrix membranes. Moermans et al. (Moermans et al., 

2000) prepared 200 to 400 micron thick free standing mixed matrix membranes 

incorporating 70 nm silicalite nanoparticles. These membranes had alcohol/water 
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separation factors ranging from 9 - 16 but limited fluxes (maximum 340 g m
-2

 h
-1

) 

as a result of the high membrane thickness. Liu et al. (Liu et al., 2011) used 

PDMS as filler for their nano-silicalite zeolite membrane for butanol/water 

separations. 

The agglomeration tendency of particles increases with decreasing size, 

which hampers the fabrication of high quality nanocompostie membrane. 

However, nanosized particles provide increased surface area for separation at 

lower loadings. In this thesis, we report for the first time on 25 – 40 micron thick 

nanosilicalite/PDMS nanocomposite thin films formed through dip coating onto a 

porous alumina support for ethanol/water separation. The objective is to study the 

effect of nanozeolite incorporation into a PDMS matrix. With the increased 

zeolite surface area available, the membrane showed very high ethanol selectivity 

at lower zeolite loadings.  

Table 4 lists ethanol–water separation factors reported in the literature for 

silicalite-PDMS mixed matrix membranes. Range of ethanol/water separation 

factors shown in the table (7–59), overlaps the ranges reported for both PDMS 

and silicalite-1 alone. Performance of these MMM‟s depends on the silicalite-1 

loading, particle size, source of silicalite-1, and membrane casting conditions. 

Although some performance gains have been observed with a loading as low as 

30 wt% silicalite-1 (Matsuda et al., 2002)(Moermans et al., 2000, loadings of 60 

wt% may be needed to deliver consistently high separation factors (J. Huang & 

Meagher, 2001). 
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Table 4 Ethanol-water separation factors of silicalite-silicone rubber MMM’s. 

Tem

p 

(
0
C) 

Silicalite 

Loading 

(wt%) 

EtOH/H2

O () 

Notes Ref 

22 77 59 

7 wt% EtOH, 125 m thick, 

<1 m particles 

(Jia et al., 

1992) 

22 77 34 
5 wt% EtOH, 20 m thick, <1 

m particles 

(Jia et al., 

1992) 

22 62 13-16 
7 wt% EtOH, 4-12 m thick, 

<1 m particles 

(Jia et al., 

1992) 

50 50 29.3 4.4 wt% EtOH,  
(X. Chen et 

al., 1998) 

40 40 28 
0.01 wt% EtOH in presence 

of aroma compounds 

(Vankeleco

m et al., 

1997) 

35 30 ~10 6 wt% EtOH 

(Vankeleco

m et al., 

1997) 

30 70 17 
5 wt% EtOH, 1.8 m 

particles, 100m thick 

(AdnadjeviÄ

‡, 

JovanoviÄ‡, 

& Gajinov, 

1997) 

22.5 60 16.5 
5 wt%, 100 m thick, 5 m 

particles 

(te Hennepe 

et al., 1987) 

22.5 40 14.9 
5 wt% EtOH, 100 m thick, 5 

m particles 

(te Hennepe 

et al., 1987) 

35 30 15.7 6 wt% EtOH 
(Moermans 

et al., 2000) 

60 50 7.5 
4.8 wt% EtOH, <40 m 

particles, supported 

(X & S, 

1996) 

35 50 ~7 6 wt% EtOH 

(Vankeleco

m et al., 

1995) 

25 30 16.2 
4 wt% EtOH, 200 nm 

paticles, 27 m thick 
This Work 
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3.2 DIP-COATING 

  “Dip coating is precisely controlled immersion and withdrawal of 

any substrate into a reservoir of liquid in order to deposit a layer of material onto 

the substrate” (Rahman, 2007).  

The dip coating process can be divided into five stages: (Rahman, 2007)  

 Immersion: The support is dipped or immersed in the coating solution at a 

constant speed (preferably jitter-free). 

 Start-up: The support has remained in the solution for a while and is starting 

to be pulled up from the solution. 

 Deposition: The thin layer of coating material deposits itself on the substrate 

while it is being pulled up. The withdrawing is carried out at a constant speed 

to prevent any deformities. Withdrawal speed determines the thickness of the 

deposited layer (faster withdrawal gives thicker coated layer). 

 Drainage: Excess liquid is drained from the surface by wiping or inclining 

slightly. 

 Evaporation: In this step the solvent evaporates from the liquid, forming the 

thin layer. Volatile solvents like alcohols, start evaporating during the 

deposition & drainage steps itself. 

In the continuous process, the above steps are carried out one after another. 

Many factors like the submersion time, withdrawal speed, number of dipping 

cycles, solution composition, concentration and temperature, determine the final 

state of a dip coated thin film. By controlling the above mentioned factors, a large 
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variety of dip coated film structures and thicknesses can be fabricated. Dip 

coating technique can give uniform, high quality films even on bulky, complex 

shapes or substrates. 

3.3 EXPERIMENTAL 

3.3.1 Support structure 

 

 Anopore alumina membranes obtained commercially (Whatman Co.) were 

used as supports. Anopore membranes, also called Anodisc, are alumina films 

with well-defined cylindrical, straight, and hexagonally packed pores running in 

the direction normal to the membrane surface (Crawford et al., 1992; Furneaux, 

Rigby, & Davidson, 1989). They are made by electrochemical anodic oxidation of 

aluminum and are available in 60 µm thickness. Anopore membranes with 

smallest pore size available commercially have a pore diameter of 20 nm. The 

majority of the membrane is comprised of straight, cylindrical, and non-connected 

pores of 200-250 nm diameter lying over 58 micron of the membrane thickness. 

The top layer of the membrane consists of 20 nm straight pores and has a 

thickness of 2 microns. A schematic of the Anopore membrane structure and 

SEM image of the composite pores, measured in our laboratory are shown in 

Figure 11. Before conducting pervaportion, the support ring was trimmed out in 

order to fit the membrane in pervaporation cell.  
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(a)                                                           (b) 

Figure 11: Images of straight pore alumina membrane. (a) Schematic of the 

straight pore structure and dimensions (Seshadri, Alsyouri, & Lin, 2010); and (b) 

SEM cross sectional view showing the support side with 200 nm pore size     

3.3.2 Membrane preparation  

 

 Anodiscs were sonicated in deionized water for 10 min to remove 

impurities that were physically adsorbed on the surface; then the Anodiscs were 

soaked in deionized water for 1 hour to fill the pores with water. This was done to 

prevent intrusion of PDMS solution into the pores of anodisc. 

 Nanosilicalite-1 particles were sonicated in iso-octane for 180 

minutes to break the crystal aggregates and improve dispersion into the polymer 

solution. The suspension is not stable and silicalite particles settle down once 

sonication is stopped. Therefore it is important to keep stirring the solution till the 

solution is viscous enough to slow down the zeolite particle sedimentation. After 

sonication RTV B was added to the zeolite suspension and mixed at 24 
0
C for 15 

min followed by addition of RTV A and mixing for 15 min at 24 
0
C. The final 

mixture had a composition of 90 wt% solvent, 7 wt% polymer and 3 wt% 

nanosilicalite-1. The solution was then heated to 65 
0
C with continuous mixing 
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for 180 minutes to partial polymerization of PDMS. As the solution became 

moderately viscous it was cooled and used directly for dip-coating. 

The Anodisc was taken out of the water and taped at the edges to a holder. Excess 

water on the top was wiped out quickly with filter paper. The Anodisc was dip-

coated into the nanosilicalite-PDMS solution for 5 seconds and withdrawn. After 

drying at 24 
0
C for 10 min, the dip-coating process was repeated. Afterwards, the 

membrane was dried at 24 
0
C for 24 hours, 70 

0
C for 6 hours and then kept at 70 

0
C for another 3 hours under 5 in Hg vacuum to ensure complete cross-linking. 

3.3.3 Membrane characterization 

 

 The morphologies of the synthesized membranes were studied by Nicolet 

4700 ATR-FTIR and Scanning electron microscopy (XL30 ESEM-FEG). The 

membrane samples were prepared by freeze fraction in liquid nitrogen and sputter 

coated with gold. 
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Figure 12: ATR-FTIR spectra of PDMS-zeolite composite membrane (MMM), 

PDMS coated anodisc, Nanosilicalite-1 zeolite partilcles and anodisc support. 

 The FTIR spectra of the PDMS films and composite membranes are 

shown in Figure 12. The PDMS sample exhibited strong peaks at 880-880 cm
-1 

and 1260 cm
-1

. The multiple peaks between 700 and 830 cm
-1

 were due to the 

methyl (CH3 group) rocking and the Si-C stretching vibrations in the Si-CH3 

group. The twin peaks at 1025 and 1080 cm
-1 

originated from the asymmetric 

stretching of the Si-O-Si and the Si-CH3 umbrella mode. The other peaks, at 1255 

and 3000 cm
-1

 were due to CH3 vibrations (Larkin, 2011; Smith, 1999). 
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 The nanosilicalite-1 exhibited  a  broad  characteristic  peak  at 900–1100  

cm
−1

,  which  was  due  to  the  Si–O–Si  structure.  The minor  band  at  3600–

3720  cm−1 was  due  to  the  Al–OH,  Si–OH  (3515  cm−1),  and  OH  bonds  

(3705  cm−1).   

 The incorporation of the zeolite into the PDMS matrix did not alter the 

characteristic peaks of pure PDMS and composite membrane. However, the peak 

area increased with the increase in silica content. This is due to the filler silica, 

which includes many Si-O-Si chemical bonds. 

SEM 

 The difficulties in the preparation of zeolite filled membranes arise from 

the fact, that zeolites do not disperse well in any organic solvent due to large 

density difference; have negative affinity towards organic polymers and have 

higher density than polymers. This makes homogeneous dispersion of zeolite 

crystals very difficult(Jia et al., 1992).  Figure 13(a) and 13(b) show the SEM 

cross-sections for PDMS coated anodisc and PDMS-nanosilicalite membrane 

respectively. As can be seen, a defect free membrane as thin as 7 microns could 

be prepared with pure PDMS solution. However, as the tendency of the particle 

agglomeration is inversely proportional to the particle size (Vane et al., 2008), 

preparation of good-quality thin nanocomposite membrane is hampered. Herein 

the thickness of composite membrane is 28 microns which is several times the 

size of the nanosilicalite crystallites. This ensures that the membrane is free from 

possible cracks or pinholes. 
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      (a)                                                        (b) 

 

    ( c ) 

Figure 13: SEM cross-sections of (a) pure PDMS membrane (b) 20 wt% 

nanosilicalite-PDMS membrane (c) nanosilicalite-1 particles. 
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3.4 RESULTS AND DISCUSSIONS 
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Figure 14: Pervaporation tests of nanocomposite membranes at different 

temperatures (a) Flux (b) Separation factor (EtOH/Water) for 4wt% ethanol feed 

solution 

3.4.1 Effect of zeolite loading on ethanol and water permeabilities at 25
 o

C 

 

 Figure 14 (a) shows the normalized fluxes and Figure 14  (b) shows the 

separation factor for the pervaporation performance of a 4 wt % ethanol/water 

solution at different zeolite loadings and temperatures. All samples were 

fabricated and tested in triplicate, if error bars are not visible; the error is smaller 

than the symbol. The ethanol-water separation factor increased in the 

nanocomposite membranes, compared to the pure PDMS membrane, with 

increasing silicalite loading. At 25 
o
C the pure PDMS showed a separation factor 
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of 8.03 and the 30% silicalite/PDMS membrane had a separation factor of 16.5. In 

addition to increased ethanol selectivity with increased nano-silicalite loading, the 

overall flux through the membrane increased with increasing nano-silicalite 

loading. This is because of the high intrinsic permeability of the silicalite 

nanoparticles as a result of the increased adsorption and diffusion of ethanol in the 

silicalite-1 compared to pure PDMS. These results are in agreement with the 

results presented in literature for other PDMS/silicalite composites with micron-

sized silicalite particles (Hennepe et al., 1991; te Hennepe et al., 1987; 

Vankelecom et al., 1995). Figure 15 shows the pathways taken by ethanol and 

water in a mixed matrix membrane (MMM). 

 

Figure 15 Apparent pathways of ethanol and water transport through a 

nanosilicalite filled MMM. 

Table 5 presents the calculated permeability and selectivity for our nanocomposite 

membranes at all three temperatures. At 25 
0
C the permeability of ethanol in the 

membranes with 30 wt% nanosilicalite was 3.7 times greater than the pure PDMS 
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membranes simultaneously, the water permeability of the 30wt% membrane was 

only 1.8 times that of the pure PDMS membranes Additionally, the ethanol/water 

selectivity of the 30wt% nanocomposite membranes was 2.1 times greater than 

that of pure PDMS membranes. 

Table 5 Permeabilities and Selectivities for membranes with different zeolite 

loadings at varying temperatures 

Temp. Zeolite PEtOH x 10
12

 Pwater x 10
12

 Selectivity 

0
C Loading 

kmol m
-1

 s
-1

 

Kpa 
-1

 

kmol m
-1

 s
-1

 

Kpa 
-1

 
  

25.00 Pure PDMS 4.24 ± 0.42 2.93 ± 0.24 1.55 ± 0.09 

  10 wt% 6.94 ± 0.37 3.58 ± 0.28 1.94 ± 0.06 

  20 wt% 11.52 ± 0.97 4.31 ± 0.35 2.58 ± 0.03 

  30 wt% 17.02 ± 1.01 5.22 ± 0.37 3.26 ± 0.04 

          

50.00 Pure PDMS 2.89 ± 0.27 1.97 ± 0.12 1.48 ± 0.07 

  10 wt% 4.14 ± 0.26 2.54 ± 0.19 1.63 ± 0.03 

  20 wt% 6.92 ± 0.37 3.06 ± 0.22 2.15 ± 0.05 

  30 wt% 10.09 ± 0.38 3.70 ± 0.18 2.73 ± 0.03 

          

65.00 Pure PDMS 2.94 ± 0.16 1.89 ± 0.10 1.53 ± 0.03 

  10 wt% 3.68 ± 0.27 2.34 ± 0.14 1.57 ± 0.02 

  20 wt% 5.71 ± 0.34 2.78 ± 0.10 1.99 ± 0.06 

  30 wt% 9.17 ± 0.13 3.41 ± 0.09 2.69 ± 0.03 

 

PEtOH = Permeability of EtOH 

Pwater = Permeability of water 

Error in terms of standard deviation 

 

3.4.2 Comparison with previously reported membranes  

Table 6 presents a summary of the permeability and selectivities for mixed 

matrix ethanol selective membranes as reported in the literature. In contrast to our 

data,Vane et al.(Vane et al., 2008) found ethanol permeability to increase by a 



  56 

factor of 2.8 for membranes with 50% ZSM compared to pure PDMS for a 5% 

ethanol solution. However, Vane et al. found that the water permeability did not 

change significantly between the pure PDMS membrane and the mixed matrix 

membrane with 50% ZSM.  Hennepe et al. (te Hennepe et al., 1987) reported that 

the ethanol and water fluxes increased as the silicalite content was increased from 

0 to 60 wt% for a 5 wt% ethanol solution. In terms of permeabilities, the ethanol 

and water permeabilites increased 3.3 fold and 1.5 fold, respectively, compared to 

the pure PDMS membranes. 

Table 6 Comparison of permeabilities and selectivities for some of the reported 

PDMS-zeolite membranes 

No. Normalized 

thickness 

Zeolite Permeability ew Reference 

 m wt % kmol m
-1

 s
-1

 kPa 
-1

   

   Water Ethanol   

1 37 50 8.00E-12 1.70E-11 2.13 (Vane et al., 

2008) 

2 100 60 1.70E-11 2.90E-11 1.71 (te Hennepe et 

al., 1987) 

3 200 30 14.0E-11 18.0E-11 1.29 (Lue, Chien, & 

Mahesh, 2011) 

4 120 40 4.79E-12 1.28E-11 2.67 (X. Chen et al., 

1998) 

5 100 60 2.38E-12 8.69E-12 3.65 (Yi et al., 

2010) 

6 100 30 4.04E-12 1.38E-11 3.41 (Moermans et 

al., 2000) 

7 25 30 5.22E-12 1.71E-11 3.26 This work 

ew = Selectivity (EtOH/Water) 

 As can be seen from the Table 6, Yi et al. and Moermans et al. have better 

selectivity than our membrane. But Yi et al. have a zeolite loading of 60 wt% 

which is twice compared to ours. In terms of ethanol permeability, Hennepe et al. 

and Lue et al. have reported higher values than ours. But Hennepe et al. have a 
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high zeolite loading of 60 wt% while Lue et al. have poor selectivity. Moermans 

and ours are the only membranes which show high selectivity along with 

relatively high ethanol permeability. This surely proves the superior ethanol 

transport with nanosilicalites. 

 A comparison of Moermans results and our results was done at higher 

temperatures and Moermans membranes showed better performance in terms of 

ethanol permeability and selectivity. But our membranes have much higher flux 

compared to Moermans membranes due to lower thickness of 25-40 microns. 

3.4.3 Effect of temperature on pervaporation performance 

 Pervaporation performance of the nanocomposite membranes was also 

measured at 50 and 65 °C.  At these higher temperatures higher overall fluxes 

through the membrane were observed, compared to the fluxes measured at 24 °C.  

The higher fluxes at higher temperatures are partially because the vapor pressure 

of the feed solution is increased which in-turn increases the overall driving force 

(vapor pressure difference) for transport across the membrane (Wijmans & Baker, 

1995).  Additionally, the PDMS swells due to increased ethanol sorption and 

chain mobility is increased at higher temperatures which increases the diffusivity 

of ethanol and water within the membrane (Xiangli et al., 2007). Both of these 

factors – increased driving force and increased diffusivity –   contribute to higher 

fluxes through the membranes at high temperature.  

 The variation of the total flux with temperature was determined to follow 

an Arrhenius relationship: 

J = J0 exp (-Ea/RT)     
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where J is the total flux, J0 the exponential factor, Ea the apparent activation 

energy of permeation for ethanol, R the gas constant, and T the feed temperature. 

Ea can be calculated from plot of lnJ vs 1/T. For membranes with 0-30 wt% 

zeolite loading, the Ea values decrease from 34.92 KJ/mol, in the pure PDMS 

membrane, to 32.48 KJ/mol in the 30 wt% nanocomposite membranes. It can be 

seen the activation energy for permeation of ethanol decreases with increasing 

zeolite content of the membranes. A slight reduction in separation factor was 

observed with increasing temperature (compared to room temperature) for all of 

the silicalite loadings; this is contrary to results found in the literature for PDMS 

composites with micro-sized zeolites (X. Chen et al., 1998; Moermans et al., 

2000; Vankelecom et al., 1995). We hypothesize that there are two reasons for 

decreased selectivity of nanocomposite membranes at higher pervaporation 

temperatures: (1) decreased ethanol sorption capacity in silicalite at higher 

temperatures and (2) void space at the silicalite/polymer interface.  Klein and 

Abraham found that the ethanol sorption capacity of ethanol decreased with 

increasing temperature Barrer and James demonstrated adhesion problems 

occurred at polymer/zeolite interface when preparing mixed matrix membranes 

(Barrer & James, 1960). At higher temperatures increased polymer chain mobility 

could result in more void space polymer/inorganic filler.  Because we have used 

nano-sized, and not micron-sized, silicalites there is increased silicalite/polymer 

interfacial contact area and more opportunity for non-selective voids to appear. 

Figure 16 shows a schematic of increased free volume and non-selective voids in 

MMM at higher temperatures. 
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Figure 16 Schematic of (a) densely packed polymer chain matrix at lower 

temperature (b) increased free volume due to polymer chain mobility and non-

selective voids at polymer-zeolite interface occurring at higher temperatures 

3.5 CONCLUSION 

 

 Mixed matrix membranes with nanosilicalite-1 as filler and PDMS 

as matrix were prepared. The pervaporation performance of 4 wt% ethanol 

solution showed that the zeolite incorporation improved the flux and separation 

factor for ethanol separation. Detailed analyses on the transport phenomena, 

including sorption and diffusion behaviors of the ethanol-water mixtures in mixed 

matrix membrane are currently under way. The results would help in elucidation 

of the mass transfer mechanism of the multi-component solutions through the 

polymeric and mixed matrix membrane. 
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Chapter 4 

SUMMARY AND RECOMMENDATIONS 

4.1 SUMMARY 

 

 This thesis presents work on preparing and testing of free standing 

PDMS and mixed matrix membranes. A brief background about membrane 

separation processes, zeolites, mixed matrix membrane and pervaporation process 

is given in chapter 1. Pervaporation is considered to be a potential technology that 

will facilitate the production of higher bioethanol with lower production costs 

than the conventional methods.  

 In Chapter 2, pervaporation of free standing thick PDMS membranes 

was studied. The feed concentration was varied to study the membrane 

performance and it was observed that the separation factor decreases with 

increasing feed concentration. This was due to increased sorption of ethanol 

moelcules in PDMS matrix causing increased swelling. Swelling increased the 

ethanol flux along with the water flux and hence the permeation flux increased 

but separation factor decreased. 

 Chapter 3 reports the synthesis, characterization and pervaporation 

test results for supported mixed matrix membranes prepared with PDMS polymer 

matrix and nanosilicalite-1 zeolite particles as filler. Effect of zeolite loading and 

temperature variation was studied. It was observed that as that the permeation flux 

and separation factor increased with increasing zeolite loading. This was due to 

increased sorption of ethanol molecules by the zeolite particles thereby increasing 

the ethanol flux more in comparison to water flux. Increasing temperature caused 
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the permeation flux to increase but a decrease in separation factor was observed. 

The thermal mobility of polymer chains was enhanced due to increased 

temperature, reducing the diffusion resistance for the molecules. 

4.2 RECOMMENDATIONS 

 

Based on the experimental studies done in this work, the following 

recommendations are suggested for future study of the PDMS pervaporation: 

1. Modifying the external surface of zeolite particles with coupling agents to 

maximize the achievable zeolite loading and lower film thickness. 

2. Experiment with ethanol/butanol mixture separations to study the competing 

diffusion process. Other aqueous mixtures like acetone/water, butanol/water can 

be studied. 

3. Study the effect of different zeolite particles like ZSM-5 or MOF-5 on 

ethanol/water separations. 

4. Use a continuous flow system to study the effect of flowrate. Also the effect of 

different vacuum pressures on permeation can be studied. 

5. Study pervaporation at higher temperatures. 
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APPENDIX A 

PREPARATION OF SILICALITE SOL  
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Version 1, Transcriber: Yang, Date: Unknown, Prof. Jerry YS Lin Lab 

Version 2, Transcriber: O‟Brien, Jessica, Date: 17 Nov 2005, Prof. Jerry YS Lin 

Lab 

Chemicals: Tetrapropylammonium hydroxide (TPAOH, Aldrich) 

        Sodium Hydroxide (NaOH) 

        Silica Powder (SiO2) 

1. Mix 25 mL (1M) TPAOH solution with 0.35g NaOH at room temperature 

a. Stir until a clear solution is obtained 

2. Add 0.8 mL de-ionized water to the above solution 

3. Heat to 80 C 

4. Add 5g silica fine powder to the pre-heated solution with strong stirring 

until a relatively clear solution is obtained 

a. Usually coats in 10 to 15 minutes 

b. Solution will be very viscous at first; be patient 

5. The above synthesis solution is cooled down to room temperature and 

aged for 3 hours 

6. Transfer aged solution to an autoclave 

7. Place autoclave in a pre-heated oven at 120 C for 12 hours 

a. To make a smaller particle size, decrease the temperature of the 

oven and increase the time (e.g. 65 C for 400 hrs) 
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8. After 12 hours remove the autoclave from oven and allow to cool to room 

temperature for 1 hour 

9. Suspension obtained is centrifuged at 14,000 RPM for 5-6 minutes 

a. DI water is used to wash precipitates 

b. Repeat 3 times 

c. pH of sol should be about 9-10 

10. Store obtained sol at room temperature 

Safety Precautions:  

-Always conduct autoclave reactions (hydrothermal synthesis) in an oven with a 

maximum temperature below 400C (NEVER PLACE IN FURNACE; 

EXPLOSION HAZARD!) 

-The autoclave will be hot when you remove it from the oven; whether quenching 

or allowing cooling slowly at room temperature ensure sufficient time has been 

reached for inner contents to cool as well. 

-Resulting sol is corrosive and can burn you; use caution when opening the 

autoclave 

 

 


