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ABSTRACT  

   

The current study employs item difficulty modeling procedures to evaluate the 

feasibility of potential generative item features for nonword repetition. 

Specifically, the extent to which the manipulated item features affect the 

theoretical mechanisms that underlie nonword repetition accuracy was 

estimated. Generative item features were based on the phonological loop 

component of Baddelely's model of working memory which addresses 

phonological short-term memory (Baddeley, 2000, 2003; Baddeley & Hitch, 

1974). Using researcher developed software, nonwords were generated to 

adhere to the phonological constraints of Spanish. Thirty-six nonwords were 

chosen based on the set item features identified by the proposed cognitive 

processing model. Using a planned missing data design, two-hundred fifteen 

Spanish-English bilingual children were administered 24 of the 36 generated 

nonwords. Multiple regression and explanatory item response modeling 

techniques (e.g., linear logistic test model, LLTM; Fischer, 1973) were used to 

estimate the impact of item features on item difficulty. The final LLTM included 

three item radicals and two item incidentals. Results indicated that the LLTM 

predicted item difficulties were highly correlated with the Rasch item difficulties (r 

= .89) and accounted for a substantial amount of the variance in item difficulty 

(R2 = .79). The findings are discussed in terms of validity evidence in support of 

using the phonological loop component of Baddeley's model (2000) as a 

cognitive processing model for nonword repetition items and the feasibility of 

using the proposed radical structure as an item blueprint for the future generation 

of nonword repetition items. 
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Chapter 1 

INTRODUCTION 

 Recent research efforts in test development have incorporated the 

application of cognitive models for automatic item generation (Arendasy & 

Sommer, 2007; Bejar, 2002; Embretson, 1998; Embretson & Gorin, 2001; Gorin, 

2005, 2006; Gorin & Embretson, 2006; Holling, Bertling, & Zeuch, 2009). 

Automatic item generation (AIG) is the process of algorithmically creating items 

based on a specific set of features that underlie the processing needed to 

successfully answer an item. The algorithms needed for AIG can be created by 

identifying the item features that accurately predict itemsô psychometric 

properties. Accurate prediction of such properties is dependent on a 

comprehensive understanding of the itemsô response processes and identifying 

the controllable item features that correspond to the cognitive processes that 

represent the measured construct (Bejar, 1993). The current study employs item 

difficulty modeling procedures to evaluate the feasibility of potential generative 

item features for nonword repetition tasks. Specifically, the extent to which the 

manipulated item features correspond to the theoretical mechanisms that 

underlie nonword repetition accuracy and their impact on item difficulty is 

estimated. AIG model radicals are hypothesized based on the phonological loop 

from Baddelelyôs model of working memory that addresses phonological short-

term memory (PSTM; Baddeley, 2000, 2003; Baddeley & Hitch, 1974). Results 

from this study provide evidence to support the validity argument for nonword 

repetition tasks as a measure of language ability and advances efforts to fully 

automate item generation for future research and assessments.  
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Chapter 2 

LITERATURE REVIEW 

Automatic Item Generation 

 Automatic item generation is an approach to test-item development where 

items are automatically generated based on a predetermined set of item features 

that are tied to the cognitive mechanisms that drive the interpretation of the 

responses to the items. AIG has a number of benefits. For example, some types 

of tests (e.g., computer adaptive tests) require large pools of items with varying 

levels of item parameters (e.g., difficulty) to gain precision in measurement of a 

personôs score. Creating large pools of items using traditional methods of item 

writing (e.g., human item writers) is very expensive and time consuming. 

Automatic item generators have the potential to create an infinite number of 

items, in real time, once item features and their corresponding parameters have 

been established for generation. AIG also helps to address issues of test 

security. Since the cost and time investment in traditional item writing is very 

high, testing companies are forced to reuse items, which increases an itemôs 

exposure. Increased item exposure creates greater potential for items being 

compromised. AIG can generate new items that have never been seen before 

and can be retired after a single use with no loss to cost or efficiency; further, 

AIGs can be used to create parallel forms of tests. Lastly, Wainer (2002) brings 

up a somewhat unintended benefit of AIG, which is that if we are able to clearly 

identify the item features to the extent that we are able to automatically generate 

items, then we have also gained a better understanding of the construct that we 

are measuring.  
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Components of AIG. AIG has several requisite components, the most 

fundamental of which is a list of item features ï characteristics of items that vary 

from one test question to another. For example, a set of math word problems that 

test end of elementary school math ability may vary in terms of the length of the 

word problem (e.g., how many words), the types of operations required to solve 

the problem (e.g., multiplication, division, addition, and subtraction), and the 

context in which the problem is presented. Such item features can be divided into 

two types: incidentals and radicals (Irvine, 2002). Radicals are item features that 

systematically impact the itemôs psychometric parameters, such as item difficulty, 

while incidentals are surface features of items that do not impact item 

parameters.  Incidentals can be used to create isomorphs, which are items that 

are psychometrically the same, but look different on the surface. In contrast, 

variants are items that differ in terms of their radicals and are psychometrically 

different. An example of isomorphs and variants in first grade math could be in 

addition problems, where the radical is the number of digits in the numbers being 

added together and the incidentals could be the actual numbers. Therefore, an 

item with two digit addition (e.g., 22 + 75) and an item with single digit addition 

(e.g., 2 + 3) would be theorized to be cognitively and systematically different and 

therefore would be considered variants. Two items that require single digit 

addition, but are adding different numbers (i.e., 4 + 5 vs. to 3 + 5) would be 

considered psychometrically equivalent and therefore would be considered 

isomorphs. When thinking about radicals and incidentals it is always important to 

remember that they are in reference to a population. In other words, a radical for 

one population could easily be an incidental for another. 
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Evaluation of AIG. The AIG system can be evaluated by measuring the 

impact of radicals on the psychometric properties of the items. This can be done 

using item difficulty modeling via multiple regression analysis (Embretson, 1998, 

2002) and explanatory item response models (De Boeck & Wilson, 2004), among 

other ways. When possible, item difficulty modeling is highly desirable in 

assessment development because it enables the evaluation of the construct 

representation since radicals are systematically related to the cognitive 

processes of the latent trait (Embretson, 1983). Therefore, the psychometric 

properties (e.g., item difficulty) can then be explained in terms of the knowledge 

structures and cognitive processes of the latent trait, thus extending the 

argument for construct validity to the item level (Embretson, 1998, 2002; 

Embretson & Gorin, 2001). 

Once the radical structure has been validated as adequately representing 

the response processes of the construct, a set of rules can be created to 

automatically generate items. The extent to which the item generation process 

can be automated is determined by whether the rules that govern the generation 

of items allow for automatic or at least semiautomatic item generation. In some 

cases this may be a technical limitation, such as it is too difficult or impractical to 

program item generation rules into software or there may be a theoretical 

limitation where the item features that represent the cognitive process of the 

latent trait to be measured are not adequately defined.  

Approaches to AIG. According to Bejar (1993, 2002) the different 

approaches to AIG are limited by (1) the strength of the theoretical foundation 

supporting the item material and (2), the extent to which the item generation 
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process can be automated. For example, in some cases there is no existing or 

accepted theoretical or cognitive model of the latent trait. In these cases, the 

latent trait to be measured and its salient item features used for item generation 

are left to be defined by psychometricians, test developers, and content area 

experts. This type of approach to AIG is referred to as functional item generation 

(Bejar, 2002) or a bottom-up approach (Arendasy & Sommer, 2007). Such 

approaches are usually considered exploratory since a number of item features 

may be evaluated in terms of their impact on the measured construct. One risk of 

using a bottom-up approach is that it can lead to inaccurate predictions of what 

contributes to variation in item response processes because psychometricians, 

test developers, and content area experts may not properly identify the item 

features that are responsible for the variation in the latent trait (Nathan & 

Petrosino, 2003). In contrast to a bottom-up approach, a top-down approach 

assumes and proceeds from a theoretical model of the latent trait to be 

measured. The role of the theoretical model is to define the latent trait in terms of 

the cognitive processes and knowledge structures that are utilized in the item 

response process (Embretson, 1983, 1994). In addition, the theoretical model 

connects the cognitive processes and knowledge structures to item features. The 

top-down is considered confirmatory and could be considered one way to test the 

theoretical model of the latent trait and its processes.  

Ideally the development of an automatic item generator uses a top-down 

approach. The construct will have strong theoretical and empirical evidence to 

support the knowledge structures and cognitive processes that are used to 

create the radical structure of the items. Item difficulty modeling will be used to 

evaluate the radical structure. Finally, assuming the radicals are defined in a way 
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that enables the creation of a set of rules that can be used to automatically 

generate items, isomorphs and variant items will be created for use. 

Examples of AIG 

 The application of AIG methods is evident in a few domains. The earliest 

efforts in applying AIG was with visual-spatial items that intended to measure 

fluid intelligence, such as abstract reasoning (Embretson, 1999), assembly of 

objects (Embretson & Gorin, 2001), hidden figures (Bejar & Yocom, 1991), and 

metal rotation (Bejar, 1993). These types of items lend themselves to AIG 

approaches because the identified radicals are highly related to the construct and 

they can be manipulated in a way that facilitates the creation of many variant and 

isomorphic items. For example, abstract reasoning items, like those of the 

Advanced Progressive Matrix Test (APM; Raven, 1938), can easily be 

manipulated to increase cognitive processing load, and therefore item difficulty, 

by increasing the number of rules applied in the pattern and the level of 

abstraction of the shapes (e.g., overlays, fusions, and distortions) (Embretson, 

1999). Embretson and Gorin (2001) utilized AIG methods when generating 

assembly of objects items. They manipulated a number of item level 

characteristics (i.e., radicals) that were hypothesized to be representative of the 

levels of processing required to solve the items, such as the number of pieces, 

the total number of edges in all pieces, and the number pieces with curved 

edges, among others. Results revealed modest, positive, significant correlations 

(.20 to .473 in absolute value) between all but one of the manipulated item 

characteristics and item difficulty. These results supported the proposed 
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cognitive processing model for the assembly of objects task and provided 

substantive evidence of construct validity.  

There are very few examples of AIG methods in the domain of verbal 

reasoning (Embretson & Wetzel, 1987; Gorin, 2005; Gorin & Embretson, 2006; 

Holling, Bertling, & Zeuch, 2009), which may be due to the multidimensionality of 

language, or that the item radicals and incidentals are difficult to program into 

software, or both. For example, when identifying the generative components for 

Graduate Record Examination paragraph comprehension items, Gorin and 

Embretson (2006) used nine predictors of item difficulty related to text difficulty 

(modifier and predicate propositional density, text content word frequency, 

percent of content words, percent of relevant text, vocabulary level of the correct 

response and distractors, and reasoning of the correct response and the 

distractors) based on the cognitive processing model of reading comprehension 

of Embretson and Wetzel (1987). Additional predictors of item difficulty based on 

the reading comprehension model of Sheehan and Ginther (2000) were also 

included: passage length (short = 150 words, long = 450 words) and item format 

(regular format or special format that was hypothesized to require additional 

cognitive processing). Results indicated that text encoding and the level of 

vocabulary used in the response options accounted for significant variability in 

item difficulty (R2 = .62, adjusted R2 = .34). More recently, Holling et al (2009) 

reported results on the AIG of word problems to test probability theory knowledge 

in university students. The authors identified seven concepts of probability theory 

(e.g., intersection of independent events, set union for disjoint events) as 

generative item features. Twenty items were then generated using text templates 

that allowed for variation of specific text and numbers, but otherwise maintained 
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the same wording across different combinations of the generative item features. 

Results indicated that all but one of the item generative features reached 

statistical significance; amount of variability in item difficulty accounted for by the 

generative features was not reported.    

Nonword Repetition AIG 

In the speech and hearing sciences, a commonly measured construct is 

that of phonological short term memory (PSTM). Performance on measures of 

PSTM is one method for identifying children with language impairment (e.g., 

Dollaghan & Campbell, 1998; Gathercole & Baddeley, 1990). One of the tasks 

commonly used to measure PSTM is a nonword repetition (NWR) task. A NWR 

task requires a person to listen to a pseudo word, also known as a nonword (e.g., 

/ b æ t ὑ r æ /), and then repeat it.  

When used to identify language impairment in native English-speaking 

children, NWR tasks have good classification accuracy (Dollaghan & Campbell. 

1998; Graf Estes, Evans, & Else-Quest, 2007); however, researchers have 

struggled to reproduce similar results in Spanish-English bilingual children (e.g., 

Calderon, 2003; Gutierrez-Clelle & Simon-Cerejidio, 2010; Windsor, Kohnert, 

Lobitz, & Pham, 2010, but see Girbau & Schwartz, 2008). Using a researcher 

developed NWR task, Calderon (2003) observed significant mean differences 

between Spanish-English bilingual children with LI and with TD; however, the 

differences were not large enough to be clinically useful in the accurate 

identification of the children with LI. In contrast, using a different researcher 

developed NWR task, Girbau and Schwartz (2008) observed significant mean 

differences between Spanish-English bilingual children with LI and with TD.  The 
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differences were large enough to be clinically useful (82% sensitivity and 91% 

specificity); however, the combination of a very small sample size (11 children 

with LI and 11 matched typical peers) and the severity of the deficits in the 

children with LI may have contributed to the favorable diagnostic outcomes. 

One source of variation among studies of NWR is the parameters that 

were used when creating nonwords for the researcher developed NWR tasks. 

For example, Calderon (2003) created nonwords using the following constraints: 

contained one to four syllables; included only infrequently occurring syllables; 

always followed the canonical stress pattern for Spanish (penultimate stress); 

had limited occurrence of later developing consonants for Spanish; and did not 

contain consonant clusters. In contrast, Girbau and Schwartz (2007, 2008) 

created nonwords using a much different set of constraints: contained two to four 

syllables; consisted of only medium-low frequency syllables that contained one 

vowel; nonwords began only with consonants; some nonwords contained 

consonant clusters; and the nonwords followed a number of different stress 

patterns. Without a systematic analysis of how nonword characteristics impact 

the repeatability of a nonword (e.g., item difficulty), it will be difficult to create 

NWR tasks that maximize the differences between children with LI and with TD. 

With this in mind, the purpose of the current study was to investigate the impact 

of nonword characteristics on nonword item difficulty and to evaluate the 

feasibility of AIG for NWR. A review of the literature on PSTM highlighting those 

processes that are likely radicals serves as a starting point. Next the item 

features (radicals) examined in the current study are described in terms of an 

experimental design. Finally, an analytic approach to AIG based on item difficulty 

modeling is described.  
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Phonological Short-term Memory 

 Phonological short-term memory is a temporary memory storage 

mechanism in which phonological information can be maintained in a ready state 

for use (Baddeley & Hitch, 1974). PSTM plays a critical role in language 

acquisition, particularly in the area of vocabulary development (Baddeley, 

Gathercole, & Papagno, 1998; Gathercole & Baddely, 1989; Gathercole, Service, 

Hitch, Adams, & Martin, 1999). From a theoretical point of view, Baddeleyôs 

model posits that PSTM provides temporary storage of unfamiliar phonological 

memory traces while more robust representations are being constructed 

(Gathercole & Baddeley, 1993). This process has been shown to play a role in 

vocabulary acquisition as demonstrated by scores on PSTM measures 

significantly predicting later vocabulary scores in young children (Gathercole & 

Baddeley, 1989; Gathercole, et al., 1999) and in teenagers (Gathercole, et al., 

1999). 

A deficit in PSTM has been well documented as an indicator of language 

impairment in children (Botting & Conti-Ramsden, 2001; Coady & Evans, 2008; 

Dollaghan & Campbell, 1998, Edwards & Lahey, 1998; Gathercole & Baddeley, 

1989, 1990; Girbau & Schwartz, 2007, 2008; Graf-Estes, Evans, & Else-Quest, 

2007; Montgomery, 1995). Gathercole and Baddeley (1990) evaluated the PSTM 

skills of six children with LI as compared to two typical control groups, one group 

was younger and matched for verbal abilities and the other group was the same 

age and matched on nonverbal intelligence. The children with LI performed 

significantly poorer on measures of PSTM (NWR and recalling word lists) than 

both control groups. Subsequently, a variety of studies that used NWR tasks 
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have reported similar results. Twenty-three such studies were reviewed in a 

recent meta-analysis that included 549 children with LI and 942 children with 

typical language (Graf-Estes, et al., 2007). Across studies, children with LI 

scored significantly lower, on average, by 1.27 standard deviations than same 

age typical peers. Thus, it is evident that measures of PSTM, in particular NWR, 

can provide valuable information when identifying children with LI. 

Nonword Repetition Processing Model 

Nonword repetition is a widely accepted measure of PSTM ability 

(Gathercole & Baddeley, 1990; Dollaghan & Campbell, 1998) and has been 

closely associated with Baddeleyôs multi-component model of working memory 

(Baddeley, 2000, 2003; Baddeley & Hitch, 1974). There are three components of 

Baddeleyôs (2000) model (See Figure 1): (1) an executive control system (central 

executive); (2) visual and verbal subsystems (visuo-spatial sketchpad and 

phonological loop respectively) that are slaves to the central executive and 

provide temporary storage of visual and verbal information respectively; and (3), 

a long-term storage system which contains stored information and is capable of 

interacting with the working memory system. 

NWR tasks are theorized to measure the capacity of the phonological 

loop. Figure 2 illustrates the flow of verbal information through the phonological 

loop. During the input phase verbal information is coded into a phonological 

representation, also called a trace, and then held in the phonological store. The 

trace is subject to rapid decay unless it is refreshed by the sub-vocal rehearsal 

process; however, the longer the trace has to be maintained by the phonological 
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store and sub-vocal rehearsal process, the more degraded it becomes (Baddeley 

& Hitch, 1974). 

An assumption of Baddeleyôs model is that PSTM capacity is limited and 

that capacity is a function of the speed at which a trace decays in the 

phonological store and the speed at which the trace can be refreshed by the sub-

vocal rehearsal process (Baddeley, 2007). Existence of trace decay is 

demonstrated by the word length effect, where shorter words are repeated more 

accurately than longer words (Baddeley, Thompson, & Buchanan, 1975); longer 

words take more time to recall and therefore are more vulnerable than shorter 

words to trace decay or forgetting. Evidence of the rehearsal process is exhibited 

by a reduction of the word length effect when the rehearsal process is 

interrupted, such as requiring a participant to say unrelated sounds (e.g., 

repeating the word ñtheò, between each word that they are required to recall). 

Such an interruption of the rehearsal process nullifies the superior recall of 

shorter words over longer words (Cowan, Day, Saults, Keller, Johnson, & Flores, 

1992).  

Baddeleyôs model also assumes a connection between the phonological 

loop and long-term memory, which allows information stored in long-term 

memory to be used as supportive resource by the phonological loop during 

recall. Evidence of this connection comes from the lexicality effect where real 

words are recalled with greater accuracy than nonwords (Hulme, Maughan, & 

Brown, 1991; Gathercole, Pickering, Hall, & Peaker, 2001); real words have a 

lexical entry in long-term memory, whereas nonwords do not. Further evidence 

stems from the language familiarity effect where bilinguals recall verbal stimuli in 
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their native language with greater accuracy than verbal stimuli in their less 

familiar second language, which suggests a relationship between the robustness 

of the lexical entry in long-term memory and verbal recall accuracy (Thorn & 

Gathercole, 1999, 2001).  

The facilitative effect of knowledge stored in long-term memory on the 

accuracy of short-term recall has been attributed to redintigration. Redintegration 

is the process of rebuilding degraded phonological traces in PSTM with 

information stored in long-term memory (Brown & Hulme, 1995, 1996; Hulme, 

Roodenrys, Schweickert, Brown, Martin, & Stuart, 1997; Schweickert, 1993). 

During recall when the phonological trace is accessed, the redintegration process 

is activated, which attempts to rebuild the partially degraded sounds of the 

phonological trace using information stored in long-term memory. The recall 

advantage is made possible when information stored in long-term memory is 

accessed quickly and easily, which makes the process of rebuilding a degraded 

trace more likely to succeed. Successful rebuilding of degraded traces leads to 

greater accuracy in recall, which is evidenced by real words being recalled with 

greater accuracy than nonwords (Hulme et al., 1991). Similarly, the language 

familiarity effect suggests that representations in the more familiar language are 

accessed more readily than those in the less familiar language, thus providing a 

recall advantage for stimuli in the more familiar language over stimuli in the less 

familiar language of bilinguals (Kohnert, Windsor & Yim, 2006; Thorn & 

Gathercole, 1999, 2001).  

Research indicates that redintegration is facilitated by two levels of 

information stored in long-term memory, lexical and sub-lexical (Vitevitch, 2003). 
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Long-term memory support provided by the lexical level is dependent on the 

phonological similarity at the whole word level between the target word/nonword 

and other real words that stored in the lexicon. This is evidenced by the effects of 

phonological neighborhood density (ND) on PSTM recall performance. ND refers 

to ñthe number of words that resemble a given word [or nonword]éby adding, 

subtracting, or substituting a single phoneme in that word [or nonword]ò 

(Vitevitch, 2003, p. 487-488). Lexical level support of PSTM recall performance 

has been evidence by the higher recall accuracy of real words over nonwords 

and by the higher recall accuracy of nonwords with higher NDs over nonwords 

with lower NDs (De Cara & Goswami, 2002, 2003; Gathercole, et al., 1999; 

Roodenrys & Hinton, 2001; Roodenrys, Hulme, Lethbridge, Hinton, & Nimmo, 

2002; Thomson, Richardson, & Goswami, 2005; Thorn & Frankish, 2005; 

Vitevitch & Luce, 1998; Vitevitch, et al., 1999).  

Long-term memory support provided by the sub-lexical level has been 

evidenced by the effects of phonotactic probability (PP) on PSTM recall. PP 

refers to ñthe frequency with which phonological segments and sequences of 

phonological segments occur in [a particular] languageò (Vitevitch, 2003, p. 488); 

in other words, PP represents the probability that a particular sequence of 

sounds would occur in a particular language. During recall, redintegration seems 

to be facilitated by nonwords with high PP, which is evidenced by the higher 

recall accuracy for nonwords with high PP vs. nonwords with low PP (Gathercole, 

et al., 1999; Munson, Kurtz, & Windsor, 2005; Roodenrys & Hinton, 2001; 

Vitevitch & Luce, 1998; Vitevitch, et al., 1999). 
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In summary, evidence supports the phonological loop component of 

Baddeleyôs model (2000) as a cognitive model for PSTM.  The phonological loop 

is assumed to have a limited capacity to store verbal information, which is 

evidenced by the word length effect (Baddeley et al., 1975). Further, the loop is 

assumed to be supported by long-term memory, which is evidenced by the 

lexicality effect (Hulme et al., 1991; Gathercole et al., 2001), and the facilitative 

effects of PP (Munson et al., 2005), ND (Munson et al., 2005b). Thus, the 

phonological loop is a possible explanation for the construct of PSTM processing, 

and provides a cognitive model to be used in the current study for item 

development. 

NWR Radicals 

 Based on the theoretical and empirical evidence of the current research 

on nonword repetition, three nonword item features have emerged as strong 

candidates for AIG model radicals: (1) number of syllables in a nonword; (2) 

phonotactic probability; and (3), phonological neighborhood density. These three 

item features were identified based on research that suggests a relationship 

between levels of the item feature and item difficulty (Coady & Evans, 2008; 

Gathercole, Frankish, Pickering, & Peaker, 1999; Graf-Estes et al., 2007; 

Munson, Kurtz, & Windsor, 2005; Roodenrys & Hinton, 2001). 

Number of Syllables. Researchers have observed a strong significant 

negative relationship between the number of syllables in a nonword and NWR 

accuracy (e.g., Archibald & Gathercole, 2006; Dollaghan & Campbell, 1998; 

Gathercole, Willis, Emslie, & Baddeley, 1992; Girbau & Schwartz, 2007; Gray, 

2003; Montgomery, 1995, 2004); such a relationship makes it a good candidate 
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as a radical. In terms of cognitive resources, the number of syllables in a 

nonword relates to the amount of short-term memory required to store it; 

therefore, the longer a nonword is, the more short-term memory capacity is 

required to store it and the greater the amount of cognitive resources are 

required by the sub-vocal rehearsal process to maintain it. Evidence of the 

relationship between the number of syllables and NWR accuracy was made most 

apparent by a meta-analysis of 23 nonword repetition studies which observed a 

main effect for number of syllables and an interaction between the number of 

syllables and LI status (Graf-Estes et al., 2007). Across TL and LI groups, NWR 

accuracy decreased significantly as the number of syllables increased. Further, 

the significant interaction indicated larger between group differences for 

nonwords with three to four syllables than for nonwords with one to two syllables. 

Based on these relationships, syllable length is a logical radical such that 

increases in the number of syllables of a nonword should coincide with increases 

in item difficulty. 

Phonological Neighborhood Density. Researchers have reported a 

significantly positive relationship between ND and NWR accuracy (De Cara & 

Goswami, 2002, 2003; Gathercole, et al., 1999; Thomson, et al., 2005; 

Roodenrys & Hinton, 2001; Roodenrys, et al., 2002; Thorn & Frankish, 2005; 

Vitevitch & Luce, 1998; Vitevitch, et al., 1999), which makes ND a good potential 

radical. Further, ND is related to cognitive processing because nonwords with 

few to no neighbors provide little to no lexical support during NWR and therefore, 

require more cognitive resources for maintaining the nonword in PSTM. This is 

evidenced by the higher accuracy in recall of nonwords with high vs. low ND 
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(Metsala & Chishold, 2009). Thus, ND is a logical candidate as a radical such 

that increases in ND correspond to decreases in item difficulty.  

Phonotactic Probability. Researchers have documented a positive 

relationship between PP and NWR accuracy (Gathercole, et al., 1999; Munson, 

Kurtz, & Windsor, 2005; Roodenrys & Hinton, 2001; Vitevitch & Luce, 1998; 

Vitevitch, et al., 1999). PP is related to cognitive processing because of 

redintegration. That is, the lower the PP of a nonword, the less likely that sub-

lexical information can be used to fill in the blanks of the degraded memory trace 

during redintegration. This translates into the expenditure of more resources in 

maintaining the trace in PSTM. The positive relationship between PP and NWR 

accuracy has been evidenced by greater accuracy in repeating nonwords with 

high vs. low PP (Munson et al., 2005; but see Coady et al., 2010). Thus, PP is a 

logical radical such that increases in the PP of a nonword should correspond with 

decreases in item difficulty. 

Experimental studies of NWR and serial nonword recall found greater 

accuracy in recall for nonwords with high ND over nonwords with low ND (Thorn 

& Frankish, 2005; Vitevitch & Luce, 1998; Vitevitch, et al., 1999); however, there 

is a positive relationship between ND and PP, which calls into question the 

unique contribution of ND and PP on NWR accuracy. The relationship between 

ND and PP was investigated by Thorn and Frankish (2005), who found that when 

holding PP constant participants were significantly more accurate at recalling 

nonwords with high ND than nonwords with low ND. Similarly, when holding ND 

constant, participants were significantly more accurate a recalling nonwords with 

high PP than nonwords with low PP. Their results suggest that ND and PP do 
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uniquely contribute to nonword recall accuracy and thus should uniquely 

contribute to item difficulty.  

Item Difficulty Modeling 

 In AIG development, the item features (i.e., radicals and incidentals) are 

hypothesized to represent the underlying cognitive processes of the measured 

construct or latent ability; however, the utility of the item radicals must be 

empirically evaluated by applying statistical models that can estimate the impact 

of such variables on the psychometric properties of the items. Based on the 

presumption that AIG radicals determine the cognitive and therefore 

psychometric properties of an item, statistical techniques that estimate the 

relationship between radicals and item difficulty, discrimination, and response 

time are appropriate. Estimating the relationship between item features (i.e., 

radicals) and estimates of item difficulty is known as item difficulty modeling 

(IDM). A common classical test theory based IDM approach uses regression 

techniques in which the proportion of correct responses to an item is regressed 

on the item characteristics. Such an analysis will allow a researcher to estimate 

the percent of variance explained in the proportion of correct responses by the 

set of item radicals. Further, partial correlations of the regression parameter 

estimates can be used to assess the individual contributions of each radical.  

The utility of regression techniques for IDM may be limited (Embretson & 

Daneil, 2008; Daniel & Embretson, 2010). As explained by Embretson and Daniel 

(2008), classical multiple regression techniques replace the participants item 

responses with item level statistics, which in some cases can drastically reduce 

the sample size. The sample size reduction can result in large standard errors. 
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Since standard errors are used in determining the significance of the predictors 

(e.g., t = estimate/standard error), large standard errors will result in reduced 

power, which can limit the interpretability of the impact of the manipulated 

variables in the model.  

An alternative to modeling aggregated item level statistics is to model the 

raw item response data via item response theory (IRT) based methods. In IRT, 

individualsô responses to test items are used to simultaneously estimate their 

level of the latent trait and the itemsô psychometric properties. A benefit to this 

approach is that you can harness the power of the whole sample size instead of 

having to aggregate, as you do when using classical test theory methods 

(Embretson & Daniel, 2008). There are several other benefits to using IRT that 

relate more to measurement precision and the interpretation of estimates (see 

Embretson & Reise, 2000); however, in terms of IDM, the benefit of IRT methods 

is the power to explain what drives the psychometric properties (e.g., item 

difficulty). The linear logistic test model (LLTM: Fischer, 1973) comes from a 

branch of IRT models called explanatory item response models, which integrate 

item content into the prediction of responding to an item correctly. If suitable item 

content features can be identified for each item, then parameters that correspond 

to the impact on item difficulty can estimated directly using the LLTM. This is an 

advantage over classical IDM, which estimates the impact on item difficulty 

indirectly by using a series of separate analyses and aggregated data. 

 The LLTM is an extension of the Rasch model, one of the most basic 

unidimensional IRT models (Rasch, 1960). The Rasch model, or the one 
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parameter logistic model, assumes a logistic distribution and predicts the 

probability of success for person j on item i (i.e., P(Xij = 1)), as follows: 

ὖὢ ρ —ȟ   
 

 
          (1) 

where ɗj is the latent ability of person j, and ɓi is the difficulty level of item i. The 

logit of equation 1, ɗj - ɓi, is the difference between the personôs latent ability 

level and the item difficulty; further, the antilog of ɗj - ɓi is equal to the probability 

of success.  

In the LLTM, item difficulty (ɓi ) is substituted with a linear model of item 

difficulty. Items are scored on the product of their characteristics, qik, which is the 

score of item i on characteristic k in the cognitive model of the items, and an 

estimated weight of characteristic k, ɖk. The probability that person j passes item 

i, P(Xij = 1) is given as follows: 

ὖὢ ρ ȿ —Ὦȟήȟ–  
 В

 В
                               (2) 

where qi1 is 1 and  ɖ1 is an intercept. As mentioned, there is no parameter for 

item difficulty because it is predicted from a weighted combination of item 

characteristics that represent the cognitive complexity of the item.  

 There are several advantages to using the LLTM for test design. First, a 

test blueprint can be created based on the item characteristics that have 

empirical support for predicting the cognitive complexity of the construct 

(Embretson, 1998). Second, construct validity is explained at the item level such 

that the relative weights of the item characteristics represent the level of cognitive 

complexity that the item is measuring. In other words, the relative weights 
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describe the strength of relationship between the itemôs characteristics and the 

itemôs difficulty, thus presenting the opportunity to provide substantive support of 

construct validity for the measured construct (Messick, 1995). Third, IRT models 

measure item psychometric properties and person ability on a common scale, 

which allows for inferences about a personôs performance on specific item types 

to be linked to score interpretations (Embretson & Reise, 2000, p. 27); however, 

LLTM models take this one step further because the probability of answering an 

item correctly is linked to and explained by the different sources of cognitive 

complexity in the items (Embretson & Daniel, 2008). Thus, it is evident that there 

are a number of advantages for selecting the LLTM as a measurement model to 

evaluate item characteristics as generative features for AIG. Though of lesser 

importance from a measurement development perspective, the LLTM model 

parameterization can also be viewed as an empirical test of a theoretical model 

of a construct. 

 Recent application of the LLTM model to measures of individual abilities 

has increased substantially (Daniel & Embretson, 2010; Embretson & Daniel, 

2008; Embretson & Gorin, 2001; Gorin, 2005; Holling et al., 2009; Ivie & 

Embretson, 2010). Ivie and Embretson (2010) utilized the LLTM for IDM in the 

domain of spatial ability by expanding on the work of Embretson and Gorin 

(2001) with the assembly of objects task and an evaluation of a three-stage, top-

down cognitive processing model: Encoding, Falsification,  and Confirmation 

(Embreston & Gorin, 2001). A number of item characteristics that corresponded 

to each stage of the processing model were evaluated as to their impact on item 

difficulty. Results of the LLTM nested model statistics indicated that all three 

levels of the cognitive processing model contributed significantly to item difficulty. 
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Further, of the original 13 item characteristics, seven contributed significantly to 

item difficulty and represented all three levels of cognitive processing. Embretson 

and Daniel (2008) used the LLTM to understand and quantify the cognitive 

complexity of mathematical word problems on the Graduate Record Exam 

(GRE). Items were selected from an item bank of released GRE mathematical 

word problems and coded for 12 item features (e.g., number of knowledge 

principles or equations to be recalled, generating unique equations, number of 

sub-goals, and number of computations) that represented four stages of 

cognitive processing for mathematical word problem solving (problem translation 

and integration, solution planning, and decision). Results from the LLTM analysis 

indicated significant contribution of all item difficulty predictors which suggests 

positive support for the validity the proposed cognitive processing model. 

Meaning that, the manipulations of key variables in the cognitive processing 

model lead to changes in item difficulty. Thus, it is evident that the LLTM can be 

successfully used to model the impact of item characteristics on item difficulty 

using different types of items measuring different types of constructs.  

Purpose 

The purpose of the current study was to evaluate the extent to which the 

identified item radicals (number of syllables, PP, & ND) represented the 

theoretical mechanisms that underlie NWR accuracy. The primary research 

question evaluated the proposed cognitive processing model of nonword 

repetition as an accurate representation of the underlying mechanisms of 

correctly repeating a nonword. This question was addressed by examining the 

overall fit of the data to the cognitive model via the LLTM parameterization. In 
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addition, the effects of the individual AIG radicals were evaluated based on their 

contribution to the overall model. The practical implications of this research were 

to better understand PSTM as a construct, NWR as a task and its potential for 

the identification of LI in Spanish-English bilingual children. 

  



 

24 
 
 
 

Chapter 3 

METHODS 

Participants 

 This study was part of a larger study designed to develop a screening 

measure for LI in Spanish-speaking children. A sample of two-hundred and 

fifteen Spanish-English bilingual children was selected from the larger study. This 

sub-sample was selected because they were part of the first round of data 

collection when all items were administered; subsequent rounds of testing only 

collected data on subsets of the items. Ages ranged from five to seven years old 

with a mean age of 6.24 years (SD = .67). Nearly 50% of the sample was 

identified as language impaired by the larger study using the following measures: 

a parent report survey of language use and concern for LI (Restrepo, 1998); a 

standardized nonverbal scale - Kaufman Assessment Battery for Children, 

second edition (Kaufman & Kaufman, 2004); a Spanish-English language 

proficiency scale (Smyk, Restrepo, Gorin, & Gray, 2009); the Spanish Clinical 

Evaluation of Language Fundamentals, fourth edition (Wiig, Semel, & Secord, 

2006); and the Structured Photographic Expressive Language Test, third edition 

(Dawson, Stout, & Eyer, 2003). All of the children who participated were recruited 

from elementary schools in a large metropolitan area in central Arizona. Parents 

reported that all children spoke a Mexican dialect of Spanish. Qualification for 

free or reduced lunch and motherôs level of education were used as indirect 

measures of socio-economic status; ninety-six percent of the children in the 

sample qualified for free or reduced lunch, 7% of motherôs had a college degree, 

61% had a high school diploma, and 35% had only completed primary school. 
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Nonword Repetition Task 

Nonword generation and AIG radicals. To create the Spanish NWR task a 

Spanish nonword generator (Morgan & Morgan, in preparation) was developed to 

randomly generate nonwords that adhered to the phonological rules of Spanish. 

Measures of PP and ND were calculated for each nonword in Spanish using 

LEXESP. LEXESP is a Spanish word frequency dictionary that includes a list of 

over 100,000 words and their corresponding frequency count from a five million 

word Spanish corpus (Sebastián-Gallés, Martí, Cuetos, & Carreiras, 2000). Davis 

and Parea (2005) modified the LEXESP by removing foreign words adopted by 

the Spanish language that do not conform to Spanish phonotactic rules. Further, 

duplicate entries and words with diacritics, such as hyphens, were also removed 

as these types of entries can influence phonotactic statistics such as PP and ND 

(Davies & Parea, 2005). Thus, using formulas of PP, measured by biphone 

frequency, and ND obtained in the literature (Storkel, 2004), PP and ND were 

calculated for each nonword using the modified LEXESP dictionary from Davis 

and Parea (2005). The nonword generator also checked the generated nonwords 

against a dictionary of real Spanish words (Davies & Parea, 2005) to ensure that 

no nonword was a real Spanish word. In addition, native Spanish-speakers with 

five different dialects (Mexican, Colombian, Peruvian, Venezuelan, & Castillian) 

reviewed all of the Spanish nonwords used in the experiments to determine if 

they sounded like real words. If they did, those nonwords were cut. 

To create the Spanish NWR list a sample of 5,000 Spanish nonwords and 

their PP and ND were generated at each syllable length (3-5) to obtain stable 

estimates of the mean and standard deviation of the nonwords at each syllable 
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length. To control for and investigate the possible impact of PP and ND on item 

difficulty, four categories of nonwords at each syllable length were selected: (a) 

high PP-high ND, (b) high PP-low ND, (c) low PP-high ND, and (d) low PP-low 

ND. Since PP and ND are continuous variables the upper and lower quartiles of 

the PP and ND distributions were used as cutoffs for high and low PP and ND. 

Stricter cutoffs, such as the upper and lower 15%, may not have allowed for 

nonwords in the high PP-low ND, low PP-high ND categories as PP and ND are 

positively correlated (Storkel, 2004). Thus, PP was considered óhighô if the PP of 

the nonword fell above the 75th percentile of the PP distribution for the given 

syllable length of the nonword. Alternatively, PP was considered to be low if the 

nonword fell below the 25th percentile of the PP distribution for the given syllable 

length. The same cutoff rules that were used for PP were also used for ND. 

Three nonwords in each of the four categories at each syllable length were 

selected and reviewed by three native Spanish speakers to ensure that they 

were not real words in Spanish. 

Nonword audio recording. Evidence shows that nonword duration time is 

negatively correlated with performance (Lipinski & Gupta, 2005); however, 

Spanish is a syllable-timed language, meaning that all syllables have similar 

duration (Whitley, 2002, pp. 71-72). Thus, nonwords of similar syllable length will 

have similar duration times. Penultimate stress is the most common stress 

pattern in Spanish (Whitley, 2002, pp. 69); however, penultimate stress in certain 

nonwords would sound unnatural. Therefore, the three native speakers were 

asked to repeat the nonword aloud and the stress pattern that was agreed upon 

by at least 2 out of 3 native speakers was used for each word when recording the 

nonwords. 
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All Spanish nonwords were recorded digitally as .wav files by a native 

Spanish-speaking female using a USB headset microphone (Cyber Acoustics 

AC-850) with Adobe® Audition 1.5. One-half second of silence was added to the 

beginning and 2.5 to 3.0 seconds of silence were added to the end of each 

nonword so that all nonword .wav files were five seconds in length. Silence at the 

beginning and end of the nonword .wav files equalized administration time for 

each nonword. Directions were recorded by the same native speaker who 

recorded the nonwords. The nonwords were put into playlists using iTunes and 

then downloaded onto IPod Nanos for administration. 

Administration design. A planned missing data design (Appendix A) was 

used to create three forms of the NWR task where each participant repeated 24 

of the 36 nonwords. Each form contained 24 nonwords with two items per 

category (high PP high ND, high PP low ND, low PP high ND, low PP low ND) 

per syllable length (3, 4, & 5). Within each syllable length the nonwords were 

pseudo-randomized to reduce any order effects and each list was presented in 

an order of increasing syllable length; an example form is provided in Appendix 

B. All forms were presented equally across the entire sample and forms were 

randomly assigned to participants.  

Procedures 

The nonwords were presented using IPod Nanos and the participantôs 

responses were audio recorded using digital voice recorders with headset 

microphones. During administration, the participants were told that they were 

going to hear a funny language and the tester wanted to see how well they could 

repeat the words in that language. The participants listened to a set of 
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instructions in Spanish which was followed by a set of prompts that trained the 

participant to the task by practicing to repeat three nonwords. During the practice 

session, a trained administrator gave the participant feedback such as the level 

and clarity of the participantôs voice and the speed at which the child was 

repeating the nonwords. 

 NWR scoring. Audio recordings of the participantsô repetitions were scored 

by trained Spanish speakers. Items were scored dichotomously where a 1 

indicated that the participant repeated the nonword with 100% accuracy and a 0 

indicated any amount of errors in repetition. Ten percent of the audio recordings 

were scored twice and checked for inter-scorer reliability by the author who is 

Spanish-English bilingual proficient. Percent agreement was .963. 

Analyses 

Three phases of analyses were conducted. Phase I consisted of classical 

item-level statistics such as item descriptive statistics (i.e., means and variances) 

and inter-item correlations. Additionally, Coefficient Alpha, a measure of internal 

consistency or reliability, was estimated for each of the NWR administration 

forms using SPSS 19. The missing data that was created by the planned missing 

data design prohibited the estimation of reliability with internal consistency 

estimates across all administration forms; however, the different types of 

nonwords had equal representation across all forms and each form had the same 

number of items.  

Phase II consisted of a dimensionality assessment of the items, fitting the 

items to a Rasch model and evaluating the items fit to the model. An assumption 



 

29 
 
 
 

of the unidimensional dichotomous Rash model is that the items measure a 

single common construct (Embretson & Reise, 2000); therefore, the 

unidimensionality assumption was assessed prior to item parameter estimation. 

The unidimensionality of the set of items was assessed by conducting a 

confirmatory factor analysis (CFA) using full information maximum likelihood 

estimation in MPLUS 6.0; sample code is presented in Appendix C. It is 

suggested that the fit of CFA models be assessed using at least one fit index 

from each class (parsimony, absolute, and comparative; Brown, 2006; Yu & 

Muthén, 2002). Thus, the CFA model fit was assessed using the following 

methods: model chi-square where a p > .05 would indicate that the model 

estimates adequately reproduced the sample variances and covariances; the 

weighted standardized root mean squared residual (WSRMR) where values of 

less than 1.00 are considered adequate; the root mean squared error of 

approximation (RMSEA) where a value of less than 0.05 is considered adequate; 

and the comparative fit index (CFI) where a value of greater than 0.95 is 

considered adequate (Brown, 2006; Yu & Muthén, 2002). In addition, localized 

areas of strain in the model were evaluated using the standardized item residuals 

where values of less than the absolute value of 1.96 are considered adequate; 

items with standardized residuals larger than 1.96 were considered for removal.  

Rasch Model Estimation. The remaining items from the CFA were fit to a 

Rasch model using BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996); 

sample code is presented in Appendix C. BILOG uses marginal maximum 

likelihood (Bock & Aitkin, 1981) estimation via the EM algorithm (McLachlan & 

Krishnan, 1997) and incorporates a Bayesian framework (Mislevy, 1986). The 

analysis was conducted using the RASCH calibration routine in BILOG-MG, 
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which fixed the discrimination parameter for all items to one and scaled the item 

difficulty parameters to a mean of zero and standard deviation of 1.  

Item Fit. Items were evaluated as to their fit to the Rasch model using the 

weighted mean square fit statistics (Wright & Masters, 1991) called infit, which is 

the ratio of the observed residuals to the expected residuals. When the ratio is 

close to one, the observed residuals are varying similarly to what is expected; 

thus, a weighted mean square that is close to one is desired. Mean square 

values above or below one indicate that the items are varying more or less than 

expected. Items with a mean square greater than one contribute less in terms of 

the overall estimation of the latent variable and tend be questionable. Adams & 

Khoo (1996) suggested that .75 and 1.33 are reasonable lower and upper 

bounds of the weighted mean fit statistic for infit. In addition, the fit of the data to 

the Rasch model was visually evaluated comparing empirical versus model 

implied item characteristic curves (ICC). An ICC is the plot of the probability of 

answering an item correct as a function of ɗ. ICCs of the empirical data from the 

examineeôs responses can be plotted against ICCs of the model implied 

parameters. The extent to which the empirically derived probability values fall 

within the 95% confidence interval of the model implied probability values 

indicates better or worse item fit. Items that do not demonstrate adequate fit to 

the Rasch model were considered for removal before proceeding to Phase III. 

Item Distribution and Information Curves. For the current study, the items 

were constructed to represent a distribution of items that spanned from easy to 

very hard. Information curves can be used to evaluate the distribution of the 

items with respect to the amount of psychometric information that they provide 

along points on the latent continuum. More specifically, an item information curve 
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is the plot of the psychometric information that an item provides at any given 

value of ɗi, where the peak of the item information curve can be interpreted as 

the point on the latent continuum where that item provides the most information 

or the best discrimination between latent abilities. Test information is the sum of 

all of the items information at a given value of ɗ and the height of the test 

information function at each level of ɗi indicates the level of reliability of the items 

at that level of ɗi. The inverse of test information is the standard error of 

measurement (Embretson & Reise, 2000, p. 15) and is a measure of reliability in 

IRT. Since reliability in IRT is a function of ɗ we can be more or less confident 

about a personôs test result based on their latent ability ɗ and the level of test 

information or standard error on that point in the latent continuum. In the current 

study it was desirable to observe a tall but wide test information function, 

because items were generated to target a wide range of participant abilities on 

the latent continuum.  

Phase III provides the results that are central to the research questions 

and consist of evaluating the empirical model of item difficulty to the theoretical 

cognitive model. Further, the individual contribution of the item attributes (syllable 

length, phonotactic probability, and neighborhood density) as predictors of item 

difficulty were also evaluated. Descriptive statistics of the item attributes were 

estimated, followed by a series of regression models where the item 

characteristics and the two interactions (PP by number of syllables and ND by 

number of syllables) were used to predict item difficulty (proportion correct per 

item for the total sample). The regression models evaluated all combinations of 

adding the three item characteristics and the two interactions incrementally as 

predictors of item difficulty.  The results of the regressions were used to get an 
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initial sense of the relationships between the item characteristics and item 

difficulty. Less attention was paid to tests of statistical significance and more was 

paid to the strength of the relationships between the predictors and the 

dependent variable. 

LLTM Estimation. Conditional maximum likelihood estimates of the LLTM 

parameters from the raw item data were estimated using the eRm package for R 

(Mair, Hatzinger, & Maier, 2010); syntax is presented in Appendix C. A model 

comparison approach was used where the item characteristics were added one 

at a time thus creating nested models. These nested models were evaluated 

using a chi-square difference test of the -2 log likelihoods and the Akaike 

Information Criterion (AIC; smaller values indicate better fit).  A correlation (r) and 

multiple-correlation squared (R2) was calculated for each LLTM model to 

evaluate the relationship of the LLTM predictions of item difficulty to the Rasch 

model item difficulties. The R2 can be interpreted similarly to regression where a 

predictor or set of predictors is said to explain a percent of variance in the 

dependent variable. The R2 was used to evaluate the explanatory power of the 

overall model and to evaluate the individual contribution of each predictor. 

Next the cognitive model coefficients (ɖj) were evaluated based on their p-

value, magnitude, and direction; the p-values and ɖj weights can be interpreted 

as they would in regression where the p-values denote a statistically significant 

relationship between the predictor and the dependent variable and the ɖj weights 

denote the direction (positive vs. negative) and the strength of that relationship 

when all other variables in the model are present. As with multiple regression, 
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multi-collinearity among the predictors may make the interpretation of the 

direction and magnitude of the parameter estimates less feasible. 
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Chapter 4 

RESULTS 

Descriptive Statistics 

 Thirty-six Spanish nonword items were administered to 215 Spanish-

English bilingual children with TD and with LI. As expected, the children with TD 

had a significantly higher mean score than the children with LI, F(1, 214) = 19.90, 

p < .01, ɖ2 = .01. Item level proportion correct for the sample ranged from .13 (SD 

= .33) to .92 (SD = .27); 64% of the items had proportion correct values that fell 

within .30 to .70 accuracy. In addition, average proportion correct was calculated 

for each form: Form 1 (ɛ = .55, SD = .20, n = 65); Form 2 (ɛ = .59, SD = .22, n = 

77); Form 3 (ɛ = .48, SD = .20, n = 78). There were no perfect scores or zero 

scores for Form 1, two perfect scores and no zero scores for Form 2, and one 

perfect score and no zero scores for Form 3; descriptive statistics for all 36 items 

are reported in Table 1. Inter-item correlations were calculated using the raw 

dichotomous data and ranged from -.28 to .55 (See Table 2); 66% of the items 

had acceptable biserial correlations with the total score (rbis > .20; See Table 1). 

Coefficient alpha was computed for each of the three administered forms and 

ranged from .78 to .85; coefficient alpha was not calculated across form due to 

the planned missing data design. 

Dimensionality 

 Results from the unidimesional confirmatory factor analysis indicated that 

the data fit a single factor model well given the following fit statistics: chi-square 

test of model fit, ɢ2 (594) = 614.74, p = .27; RMSEA = .01 with a 90% confidence 
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interval of 0 to .018; CFI = .988; and WRMSR = .90. Thirty-five items had 

statistically significant factor loadings at an alpha level of .01; standardized factor 

loadings ranged from .30 to .75; results did not indicate any areas of localized 

strain. 

Rasch Modeling 

 The data were assessed as their fit to a Rasch model using BILOG-MG, -

2 log likelihood = 9808.07, AIC = 9897.92; sample code is provided in Appendix 

C. The difficulty parameter estimates ranged from -2.56 to 2.58; item parameter 

estimates and fit statistics are reported in Table 3. Visual inspection of the ICCs 

indicated that seventeen items had three or more empirical values falling within 

the 95% confidence interval of the Rasch estimates; fifteen items had two 

empirical values falling within the 95% confidence interval of the Rasch 

estimates; four items had only one empirical value falling within the 95% 

confidence interval of the Rasch estimates; and item x15 had no empirical values 

falling within the 95% confidence interval of the Rasch estimates (See Figure 3 

item ICCs). Based on a visual inspection of the ICCs, it seemed that the misfit 

was due to the constraint of the slope parameter to one. Many of the items that 

had only two empirical values fall within the 95% confidence interval appeared to 

have much flatter slopes than the defined slope of 1.00 in the Rasch model. 

Across all items, it did not appear that the misfit was due to guessing or the lower 

asymptote. A person-item map plot presents the distribution of person thetas and 

item difficulty parameters on the same latent scale. The person-item map in 

Figure 4 shows that the distribution of item difficulty parameters and the person 

thetas are slightly positively skewed; however, there seems to be a good spread 
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of item difficulties and person abilities ranging from negative two to positive two. 

As a result of perfect or zero scores, a few person theta parameters were 

estimated as higher or lower than the difficulty of all of the items which can create 

estimation problems; however, perfect and zero scores can be handled the 

marginal maximum likelihood estimation procedure used by BILOG-MG and were 

given finite theta estimates. Figure 5 depicts the total test information function 

and the standard error of measurement. The standard error of measurement 

ranged from around .05 to .2 over the middle quartiles of the information 

distribution. 

Regression Analyses 

 A series of multiple regression analyses were conducted to initially 

evaluate the relationships between item features and item difficulty. Although the 

each item was created based on a set of categorical features (e.g., high-PP and 

low-ND), the actual values of the item features were used for the analyses (See 

Appendix D)The correlations between the item features ranged from -.36 to .55 

and ND had the highest correlation (.53) with the dependent variable (See Tables 

4 and 5). The first set of regression models included the three hypothesized 

radicals only; the second set of models included main effects and two 2-way 

interactions. Table 6 lists the results of the model comparisons and Table 7 lists 

the results of the best fitting model. Predictors in the best fitting model included 

ND and PP and accounted for 32% of the variance in item difficulty. Coefficients 

for the best fitting model indicated a significant positive main effect for ND; PP 

was retained in the model (p = .06) because it substantially increased the R2. 
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Surprisingly, the radical number of syllables was not a significant predictor (p = 

.15). 

Additional Regression Analyses. The initial regression analyses left a 

substantial amount of variance unexplained. Therefore, additional features were 

considered in an attempt to explain more variance in item difficulty. The first 

additional item feature was the presence or absence of consonant clusters or 

consonant blends in the nonword. A consonant cluster is two or more 

consecutive consonants (e.g., cr or str); only consonant clusters that occurred 

within a syllable were considered. In Spanish, there are only 13 legal consonant 

clusters, the maximum number of consonants in row is two, and they only occur 

in the initial and medial positions of a word (Whitley, 2002). The presence of 

consonant clusters may add an additional level of difficulty that could be 

explained within the cognitive model because consonant clusters are an 

additional source of phonological complexity in words. Consonant clusters may 

also be a source of construct irrelevant variance if the participants have yet to 

acquire them; however, this is unlikely as the acquisition of consonant clusters in 

Spanish starts as early as 1;1 (years; months) in the initial position and 1;5 in the 

medial position. In addition, evidence suggests that the rate of occurrence of 

cluster reductions ï a common type of error whereby the consonant cluster is 

reduced to one of the consonants ï drops below 10% by five years of age in 

typically developing English-speaking children (Roberts, Burchinal, & Footo, 

1990). In the current set of nonwords, thirteen of the 36 nonword had at least one 

consonant cluster and the pearson correlation between the presence of 

consonant clusters and item difficulty was moderate to strong, r = -.62, and 

significant p < .01.  
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The second additional coded item feature was the number of phonemes 

or sounds in a nonword. The item feature number of phonemes was examined in 

that it could provide a finer grain measure of nonword length than number of 

syllables. Counting the number of phonemes also accounts for the contribution of 

additional sounds provided sound blends, such as consonant clusters, which the 

variable number of syllables does not (e.g., pato vs. plato). The pearson 

correlation between the number of phonemes and item difficulty was strong, r = -

.74, and significant, p < .01; the average number of phonemes per nonword was 

8.56 (SD = .49). 

A second series of regression analyses was conducted to evaluate the 

explanatory contribution of the additional item features. Similar to the previous 

regression analyses, a model building approach was used where independent 

variables were entered into the regression equation one at a time and evaluated 

for their contribution to the model. The best fitting model from the previous set of 

regression analyses was used as the base model upon which the additional 

predictors were added; model comparison results are reported in Table 6 and 

regression estimates of the new best fitting model are reported in Table 7. 

Results of the final model indicated that the additional predictor, number of 

phonemes, significantly contributed to increased explained variance in item 

difficulty, adjusted R2 = .60, change in F(1,32) = 23.44, p < .01. Though 

consonant clusters did not significantly explain more variance as compared to the 

previous model; its small p-value (.10) and moderately strong strength of 

relationship (-.619) with the dependent variable suggests that it should be 

retained for LLTM analyses. Overall, the final model, which included the variables 
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ND, PP, and number of phonemes, accounted for 60% of the variance in item 

difficulty. 

LLTM Analyses 

LLTM Estimation. Results of the Rasch and LLTM models are reported in 

Table 8. The results indicated that the Rasch model was the best fitting model, -2 

log likelihood = 2501.39, AIC = 2591.24 and the best fitting LLTM model was 

Model 6, -2 log likelihood = 2691.19, AIC = 2697.30. The three predictors in the 

best fitting LLTM model included, number of phonemes, PP, and consonant 

clusters; all were significant with p-values less than .01. The parameter estimates 

of LLTM Model 6 and their respective statistics are reported in Table 9.  

The contribution of each radical was evaluated by its R2 when it was the 

only predictor in the model; in addition, its squared partial correlation was also 

calculated and describes the individual contribution of the predictor when 

controlling for all other predictors (radicals) in the LLTM model. Results indicated 

that the item radical number of phonemes accounted of the greatest amount of 

variance in item difficulty (R2 = .62) when it was the only predictor in the model 

and it had the largest squared partial correlation LLTM model 6 (partial R2 = .67). 

LLTM Model Fit. Results indicated strong fit of the LLTM model predicted 

values when compared to the Rasch model. The LLTM predicted item difficulty 

parameter estimates of the best fitting LLTM model (Model 6) were highly 

correlated with the Rasch item difficulty parameter estimates (r = .83). Further, an 

R2 of .70 indicated that the set of item radicals for Model 6 accounted for 70% of 

the variance item difficulty. Correlations and R2s between the Rasch item 
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difficulty parameter estimates and the LLTM predicted item difficulty parameter 

estimates are reported in Table 8. 

The relationship of the LLTM predicted item difficulties to the Rasch 

estimated item difficulties was also evaluated visually. After rescaling both sets of 

item difficulties to have a mean of zero and standard deviation of one, the LLTM 

difficulty parameter predictions were plotted against the Rasch difficulty 

parameters estimates (See Figure 6); see Table 10 for the rescaled item 

difficulties for LLTM Model 6 and the Rasch model. Each of the numbers on the 

scatter plot represents an item and the proximity of the number to the diagonal 

line indicates the precision at which the LLTM was able reproduce the item 

difficulty parameter estimates of the Rasch model. As can be seen from the 

scatter plot, many of the numbers are falling on or near the diagonal line, which 

corroborates the numerical results presented above.  

Evaluation of Incidentals. Three incidental item characteristics were 

identified and coded: vowel as beginning sound, vowel as ending sound, and the 

inclusion of a late acquiring sound. These incidentals were chosen because 

within the assumptions of the cognitive model they did not have a strong 

association with item difficulty; see Table 4 for their descriptive statistics and 

Table 5 for correlations among all of the item features and their correlations with 

the proportion correct. Twelve items had a vowel as a beginning sound, twenty-

one items had a vowel as an ending sound, and eight items had vowels as both 

beginning and ending sounds. All of the items had late acquiring sounds for 

Spanish, so that incidental was not analyzed. The remaining two incidentals were 

added as a set to the final LLTM model to evaluate their impact on item difficulty 
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above and beyond that of the item radicals. Results indicated that the LLTM 

model with incidentals (LLTM Model 7) fit significantly better than the LLTM 

model without them (LLTM Model 6), ɢ2(2) = 48.82, p < .01, R2 =.78; model 

statistics for LLTM Model 7 are reported in Table 8. Both incidentals were 

significantly negatively associated with item difficulty; parameter estimates for 

LLTM Model 7 and their respective statistics are reported in Table 9. After 

rescaling the item difficulties to have a mean of zero and standard deviation of 1, 

the predicted item difficulties from the LLTM model with the incidentals were 

plotted against the Rasch model (see Figure 7); the rescaled item difficulties for 

the LLTM model with the incidentals are in Table 10. In comparison to the scatter 

plot in Figure 6, it is seemed that the predicted item difficulty parameter estimates 

from the LLTM with the incidentals fit tighter to the diagonal line. The visual 

inspection was corroborated by a slightly higher correlation between the 

predicted item difficulties for the LLTM model with the incidentals and the Rasch 

model (.89) than the correlation between the Rasch and the LLTM without the 

incidentals (.84); the correlation between the two LLTM models was .95. 
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Chapter 5  

DISCUSSION AND LIMITATIONS 

A Cognitive Model for Nonword Repetition  

The current study evaluated the phonological loop component of 

Baddeleyôs (2000) model as cognitive processing model for NWR. The model 

hypothesizes that both PSTM and long-term memory contribute to variation in 

nonword repetition ability. Previous studies of nonword repetition tasks have 

primarily focused on the diagnostic accuracy of the task when used to identify 

children with language impairments (Dollaghan & Campbell, 1998; Gutierrez-

Clellen & Simon-Cerejido, 2010); however, the cognitive processing analysis of 

nonword repetition items in the current study provides important information 

directed at understanding the substantive meaning of the construct underlying 

nonword repetition tasks. The results provide construct validity evidence in 

support of a cognitive processing model for NWR and a list of construct-relevant 

item characteristics for the future development of nonword repetition items.  

The developed item difficulty model suggests that PSTM capacity is 

primarily responsible for the variation in NWR accuracy. Specifically, the length of 

the nonwords had the largest impact on item difficulty as evidenced by the 

largest R2 value (.62) when the item radical number of phonemes was added as 

the lone predictor in the LLTM model. Further, the predictor number of phonemes 

had the largest partial squared correlation (.74) in the final LLTM model, which 

indicates that when controlling for all other radicals and incidentals in the model, 

it explained the most variance in item difficulty.  
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Also consistent with the predictions of Baddeleyôs model and the results 

of previous studies (Graf-Estes, et al, 2007), the relationship between the 

predictor number of phonemes and item difficulty is positive. The positive 

direction of the regression and structural LLTM weight suggests that repeating 

longer nonwords requires more PSTM resources in terms of the capacity of the 

phonological short-term store and the maintenance of the phonological memory 

trace by the sub-vocal rehearsal process. Thus, increases in the number of 

phonemes were associated with increases in item difficulty.  

In terms of the contributions made by long-term memory, the item 

difficulty model supports the predictions of Baddleyôs model that information 

stored in long-term memory contributes positively to NWR accuracy. In addition, 

in comparison to PSTM, information stored in long-term memory plays a lesser 

role in NWR. Two radicals operationalized the potential lexical (ND) and sub-

lexical (PP) support provided by long-term memory during NWR. As individual 

predictors, both PP and ND explained small to moderate amounts of variance in 

item difficulty (R2 = .1 and .26 respectively); however, when modeled with other 

predictors (e.g., number of phonemes), only PP was a significant predictor. The 

results of the final LLTM model suggest that PP is significantly negatively 

associated with item difficulty and that it explains a moderate amount of variance 

(partial R2 = .31). This result supports the prediction that redintegration is a 

support mechanism, as opposed to the primary mechanism of PSTM, that is 

used during NWR.  
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Nonword Item Generation 

After evaluating the cognitive model, the radical structure was evaluated 

for its potential to generate nonword items. The results provided support for using 

the proposed cognitive model as an item blueprint for cognitive complexity when 

generating nonword repetition items. That is, the estimated LLTM parameter 

weights corresponded to the hypothesized representativeness of the cognitive 

processes for the construct NWR ability. For example, Baddeleyôs model 

assumes a limited capacity of PSTM, therefore it was hypothesized that longer 

nonwords would require more resources in terms of capacity of temporarily 

storing the phonological trace and maintenance by the sub-vocal rehearsal 

process; therefore, longer nonwords were predicted to be more difficult than 

shorter nonwords. The LLTM results supported this hypothesis such that the 

number of phonemes in a nonword was significantly positively related to item 

difficulty (unstandardized ɖ = .43). 

In addition to the contribution of PSTM, it was predicted by Baddeleyôs 

model that sub-lexical information stored in long-term memory would support 

PSTM recall; results indicated that PP was significantly negatively associated 

with item difficulty (unstandardized ɖ = -4.36). Although consonant clusters were 

not initially included as an item radical, they were included as an indicator of 

phonological complexity and were found to be significantly positively associated 

with item difficulty (unstandardized ɖ = .53). Furthermore, consonant clusters had 

the second largest partial R2 (.63), larger than that of PP, which suggests that the 

phonological complexity of the nonword is important to consider when creating 
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nonwords. Other measures of phonological complexity, such as dip- and trip-

thongs should be explored.  

Neighborhood density, on the other hand, was predicted to negatively 

impact item difficulty; however, the LLTM results indicated that it was not a 

significant predictor when combined with the other predictors. In retrospect, the 

null result of ND is not surprising because of the resources that were used to 

calculate ND. ND was calculated by first generating a nonword and then 

checking it against the LEXESP dictionary to see if the nonword matched any of 

the real words in the dictionary when adding, deleting or substituting each of the 

phonemes in the nonword. At best, the LEXESP dictionary is an exaggeration of 

an adultôs lexicon and it certainly largely over estimates a childôs lexicon. 

Therefore, many of the phonological neighbors that were considered in the 

calculation of ND for a particular nonword would not be in a childôs lexicon. Thus, 

even though some of the nonwords in the current study were calculated to have 

phonological neighbors, it is more likely that the ND for many of these nonwords 

was zero for a child. Therefore, the children were likely unable to benefit from the 

lexical support provided by nonwords with high ND. Future studies should take 

this into consideration by either creating or finding a word frequency dictionary 

that is calculated using a corpus of childrenôs language samples.  

In addition to the item radicals, the impact of potential item incidentals on 

item difficulty was evaluated. Results indicated that the item incidentals were 

significantly related to item difficulty above and beyond that of the item radicals. 

In particular the incidental begins with a vowel was highly statistically significant 

and negatively associated with item difficulty; this suggests that items that began 
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with a vowel were easier than items that began with a consonant. Further 

examination revealed that the variable begins with a vowel was significantly 

negatively correlated with the radical PP and the radical number of phonemes. 

These correlations suggest that words that started with a vowel tended to be 

shorter and have lower PP. While the other incidental, ends with a vowel, was a 

significant predictor in the LLTM model, it was not significantly correlated with 

any of the other predictors. Incidentals have the potential to introduce construct 

irrelevant variance as evidenced by the current results; therefore, it is just as 

important to explore item incidentals as it is radicals. The item incidental late 

acquired sounds was unable to be explored in current study because all of the 

items included at least one of these sounds. Future studies may want evaluate 

this incidental as children with a phonological or articulation impairment may 

struggle more with producing these sounds than typically developing children or 

even children with language impairment.  

Item Decomposition. One benefit of item difficulty modeling is the ability to 

decompose the items into its representative components of processing. That is, 

the value of the item characteristics can be multiplied by the structural weights of 

the item radicals and incidentals. For example, in equation 4 for item 21 with 

seven (7) phonemes, 0.08 PP, zero (0) consonant clusters, a (1) beginning 

vowel, and an (1) ending vowel, item difficulty is decomposed as follows, using 

the weights given in Table 9: 

ὦ  .39(7) + -4.36(0.08) + .53(0) + -.63(1) + -.25(1)           (4) 

     2.72 + -.36 + 0 + -.63 + -.25 

     1.48 



 

47 
 
 
 

Thus, item 21 is predicted to have moderate difficulty (1.48), and the primary 

source of difficulty is PSTM load. In fact, it is difficult to conceive of an example 

where PSTM load would not be the primary source of item difficulty given the 

current set of items; however, item decomposition can help to distinguish 

between two nonwords with the same number of phonemes but different values 

on the other predictors. The contributions of long-term memory would be more 

apparent if an additional set of nonwords based on the phonological rules of 

English were administered to these children. An additional dichotomous item 

radical that was coded to indicate the base language of the nonwords (Spanish 

or English) could then be included in the LLTM model. If coded one for Spanish 

and zero for English, the structural weight would represent the impact of native 

language knowledge stored in long-term memory on item difficulty. Language by 

item feature interactions would also warrant further investigation. 

In addition to being able to identify sources of item difficulty, the structural 

weights estimated by the LLTM could be used for programming an automatic 

item generator. As alluded to earlier, the viability of automatic item generation is 

dependent upon a number of factors including the identification of a set of 

radicals and incidentals, ease of programming the algorithms into software, 

among others. In the current study, a nonword generator was developed to 

create nonwords that adhered to the constraints of Spanish phonology. With 

some additional programming, the same generator could utilize the identified 

radicals and incidentals and their estimated structural weights to create a new set 

of nonwords. These new nonwords could then be administered to another group 

of children for cross validation. Further, the accuracy of item difficulty prediction 

could be achieved through the exploration of more item radicals and the tighter 
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control of incidentals. Future studies could cross validate the item blueprint and 

structural model by using the estimated structural weights from the LLTM model 

in conjunction with nonword generator to create a new set of items. Such studies 

would be warranted before moving forward with automatic item generation. 

Limitations 

Several limitations of the study design and data structure affected the 

interpretability and generalizability of the results and conclusions drawn here. 

First, the predictions of the LLTM were limited by the data model fit to the Rasch 

model. In the current study, the data seemed to fit the Rasch model moderately 

well, but there were some items that had less than desirable item fit statistics. 

That being said, the purpose of the study was not to create Rasch fitting items, 

but to evaluate a set of item radicals. When including the incidentals, the results 

of the current study were able to explain nearly 80% of the variance in item 

difficulty which is quite substantial.  

If future studies were concerned with the fit of the data to the Rasch 

model and wanted to try to improve the overall fit, a next step would be to 

estimate the fit of the data to a 2 parameter-logistic (2-PL) IRT model. A 2-PL 

model allows both the item difficulties and discrimination parameters to vary 

across items. Using BILOG-MG, the data were fit to a Rasch and 2-PL model for 

comparison. Results indicated that the data fit the 2-PL model better as indicated 

by a lower AIC statistic and a significant nested model chi-square, ɢ2(34) = 

936.60, p < .01. Correlations between the item features and the item 

discrimination parameters would reflect the relationship and potential impact that 

the item features have on item discrimination. The correlations between the item 
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features and the discrimination parameters ranged from -0.21 to 0.24, but none 

were significant. If some of the correlations had been stronger and significant, 

then a constrained 2-PL, such as in Daniel and Embretson (2010), could be used 

to predict the impact of the item features on item difficulty and discrimination 

parameters. Currently, the eRm package for R does not handle constrained 2-PL 

models, so future studies may want to consider using other software packages to 

explore the constrained 2-PL model with NWR data. 

In terms of limitations to the interpretability of the results, the 

multicollinearily of the model predictors was most problematic. Though the 

collinearity diagnostics for the regression model were within acceptable limits, 

most of the item radicals were inter-correlated at .40 or greater which can 

produce unreliable results. As a result, the individual contribution of any one 

predictor in a multiple-predictor model is difficult to interpret. For example, the 

sign of the estimate for ND changed from positive to negative in the final 

regression model, suggesting a possible suppressor effect (Cohen, Cohen, West, 

& Aiken, 2003). Upon further examination, ND is moderately negatively 

correlated with consonant clusters (-.41) and moderately negatively correlated 

with the number of phonemes (-.60). These relationships seem to clash as ND is 

moderately negatively correlated with item difficulty whereas the number of 

phonemes and consonant clusters are moderately positively correlated with item 

difficulty. These correlations make practical sense such that as nonwords get 

longer they have fewer phonological neighbors; a similar but more complex 

argument could be made for consonant clusters. Though not specifically tested 

here, it is likely that the effect of ND on item difficulty was suppressed by the 

variables number of phonemes and consonant clusters. It is unclear how multi-
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collinearity is affecting the outcomes of the LLTM models, but some possible 

options for handling multi-collinearity would be to create composite variables or 

principle components of the predictors. In a principal components analysis, the 

correlated predictors undergo a linear transformation and are reduced to a 

smaller set of uncorrelated variables or components. These components can 

then replace the original predictors in the regression or LLTM model while still 

representing an associated cognitive process.  

The generalizability of the results was limited by the chosen radicals and 

the specific sample of items generated for the current study. The experimental 

items were systematically constructed by manipulating the original set of item 

radicals. In doing so, however, there were limitations to what could be created. 

For example, it was very difficult to create nonwords with phonological neighbors 

at the upper extremes of nonword length. This meant that some of the longer 

nonwords that were classified as having high ND only had one phonological 

neighbor, while the shorter nonwords that were classified as having high ND had 

many neighbors, in some cases upwards of ten with the highest being 13; 

however, such a limitation was difficulty to avoid. At least all of the statistical 

analyses all used the actual values of the item radicals and not their item 

descriptor categories, which largely mitigated the impact of this limitation.  

Finally, the generalizability of the results was also limited by the lack of a 

cross validation. Future studies should aim to cross validate the proposed model 

with other sets of items from existing measures, specifically those that have 

shown good diagnostic power for identifying children with LI. Perhaps NWR tasks 

can vary in terms of all of the radicals in the current study, but it is also possible 
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that the best discriminators of LI are a subset of items that vary in terms of only 

specific radicals, or even ones that have yet to be thought of. Additionally, an 

alternative analysis to the one in current study could model the effect size 

differences between LI and TD groups on items in lieu of item difficulty. Such an 

analysis has the potential to identify which design features are related to 

diagnostic discriminatory power. 

Conclusion 

Nonword repetition tasks have been used extensively as a diagnostic tool 

to identity children with language impairment; however, there is debate as to 

whether valid inferences about a childôs language impairment status can be 

drawn from the results of a NWR task. Current theories on language impairment 

suggest two primary sources for language impairment, (1) a language deficit 

mostly in the area of grammar and syntax (Leonard, 1998) and (2) a processing 

deficit which has been investigated as a general processing deficit (Kail, 1994; 

Kail & Leonard, 1986) and as a processing deficit in specific areas such as 

PSTM (Gathercole & Baddley, 1989, 1990). The results of the current study 

suggest that nonword repetition primarily taps into PSTM, with some variance in 

item difficulty being attributed to support from long-term memory. Thus, we can 

then infer that children who ñfailò NWR tasks are demonstrating a PSTM deficit. 

Surprisingly, however, despite observing significant group mean differences, 

researchers have struggled to observe adequate levels of diagnostic accuracy 

when using NWR tasks to identify bilingual children with language impairments 

(Gutierrez-Clellen & Simon-Cerejido, 2010; Morgan, 2010, but see Girbau & 

Schwartz, 2008). Could this mean that bilingual children with LI do not 
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demonstrate PSTM deficits on the same magnitude as their monolingual peers? 

Perhaps being bilingual reduces the likelihood of a PSTM deficit because 

bilingual children are able to develop their PSTM system to greater degree than 

monolingual children by the virtue of having to learn two or more languages. 

While the goal of this study was not to evaluate the diagnostic capabilities of 

these nonword items, the children with TD did significantly outperform the 

children with LI. That said, the results of this study do provide a list of item 

radicals and incidentals that will help future efforts to generate different types of 

nonwords and investigate their impact on diagnostic accuracy.  

Human Subjects 

This research was conducted with the expressed permission of Arizona 

State University. Appendix E contains the IRB approval documents for this study.  
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Table 1. Nonword Item Descriptive Statistics 

Item Number Proportion Correct Standard Deviation r biserial 

x1 0.81 0.39  0.25 
x2 0.74 0.44  0.29 
x3 0.51 0.50  0.42 
x4 0.80 0.40  0.26 
x5 0.78 0.42  0.05 
x6 0.85 0.36  0.08 
x7 0.56 0.50  0.26 
x8 0.54 0.50  0.29 
x9 0.63 0.48  0.01 
x10 0.92 0.27 -0.19 
x11 0.30 0.46  0.15 
x12 0.35 0.48  0.13 
x13 0.61 0.49  0.37 
x14 0.82 0.38  0.34 
x15 0.28 0.45  0.37 
x16 0.34 0.47  0.38 
x17 0.74 0.44  0.19 
x18 0.68 0.47  0.17 
x19 0.40 0.49  0.37 
x20 0.26 0.44  0.23 
x21 0.75 0.44  0.01 
x22 0.58 0.49  0.13 
x23 0.31 0.46  0.22 
x24 0.52 0.50  0.15 
x25 0.63 0.49  0.36 
x26 0.63 0.49  0.34 
x27 0.58 0.50  0.37 
x28 0.63 0.49  0.42 
x29 0.66 0.48  0.20 
x30 0.51 0.50  0.19 
x31 0.29 0.45  0.24 
x32 0.25 0.43  0.37 
x33 0.35 0.48  0.07 
x34 0.13 0.33  0.19 
x35 0.26 0.44  0.18 
x36 0.39 0.49  0.16 



 
 
 

 

 

Table 2. Inter-Item Correlations 

item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1.00                                     

2 .13 1.00                                   

3 .08 .24
**
 1.00                                 

4 .30
**
 .14 .24

**
 1.00                               

5 .28
*
 .28

*
 .11 .08 1.00                             

6 .21
**
 .17 -.03 .08 .13 1.00                           

7 .29
*
 -.04 .20 .28

*
 .16 .15 1.00                         

8 .23 .15 .55
**
 .54

**
 .09 .22

*
 .23

**
 1.00                       

9 .10 .05 -.01 -.07 .04 .05 .23 .29
*
 1.00                     

10 .03 -.15 -.28
*
 .12 .22 .31

*
 .08 .08 .15 1.00                   

11 .15 -.01 .13 -.08 .05 .11 .15 .42
**
 .16 .02 1.00                 

12 .07 .10 .09 .12 .09 .00 .06 .00 .19
*
 -.02 .23

*
 1.00               

13 .12 .27
**
 .16 .17 .05 .10 .09 .22 .16 .03 -.01 .17 1.00             

14 .25
**
 .21

*
 .28

**
 .16 .34

**
 .10 .28

*
 .30

*
 .15 -.11 .16 .17 .15

*
 1.00           

15 .10 .07 .29
**
 .13 .03 .01 .23 .35

**
 .11 .09 .27

*
 .17 .05 .11 1.00         

16 .10 .21
*
 .20

*
 .13 .34

**
 .11 .20 .33

**
 .07 .10 .24 .06 .13

*
 .22

**
 .25

**
 1.00       

17 .12 .20 .39
**
 .25

*
 .10 .14

*
 .20

*
 .29

**
 -.03 .12 -.15 .16 .24

**
 .32

**
 .19

**
 .24

**
 1.00     

18 .28
**
 .16 .24 .17 -.02 .16

**
 .11 .22

*
 -.02 .20 .02 -.04 .01 .22

**
 .15

*
 .13 .27

**
 1.00   

19 .13 .13 .25
*
 .15 .21

*
 .17 .24

**
 .18

*
 .20 .10 .03 .20 .26

*
 .15 .26

*
 .23 .21

*
 .26

**
 1.00 

20 .03 .09 .09 -.05 .16 .15
*
 .21

*
 .17 .23 .00 .12 .05 .09 .15

*
 .16

*
 .24

**
 .21

**
 .07 .20

*
 

21 .12 .10 -.03 .02 .10 .27
**
 -.06 .30

*
 .22

*
 .06 .20

*
 .08 .14 .13 .14

*
 -.01 .18

*
 .03 .11 

22 -.06 .22 .23 -.16 .17 .04 .27
*
 .27

*
 .19

*
 .08 .15 .21

*
 .11 .04 .29

*
 .14 .17 .02 .50

**
 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
Note - .00 correlations go beyond 2 decimal places 
  

6
2
 



 
 
 

 

 

 

 

item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

23 .11 .18 .35
**
 .18 .12 .21

**
 .37

**
 .23 .14 .07 .06 .26

**
 .13 .19

**
 .18

*
 .15

*
 .31

**
 .18

*
 .31

*
 

24 .11 -.03 .17 .12 .18 .21 .47
**
 .19 .23

*
 .16 .27

**
 .08 .11 .17 .24 .19 .24 -.04 .41

**
 

25 .06 .22
*
 .20

*
 .19

*
 .07 .07 .39

**
 .38

**
 .12 .17 -.27

*
 -.17 .23

**
 .18

**
 .19

**
 .08 .19

**
 .22

**
 .30

*
 

26 .13 .08 .11 .02 -.04 .16 .00 .26
*
 .38

**
 .00 .12 .08 .20

*
 .19

*
 .25

**
 .17 .25

*
 .35

**
 .16 

27 .11 .31
**
 .25

**
 .02 .19 .05 .10 .20 .12 -.09 .19 .14 .13

*
 .26

**
 .07 .18

**
 .18

*
 .16

*
 .41

**
 

28 .04 .11 .15 .04 .14 .06 .28
*
 .27

*
 .07 .19 .16 .11 .18

**
 .21

**
 .25

**
 .15

*
 .28

**
 .29

**
 .27

*
 

29 .15
*
 .23 .24 .01 .09 .15

*
 .18

*
 .05 .07 .05 -.02 .21 .15

*
 .27

**
 .26

**
 .17

*
 .27

**
 .19

**
 .29

**
 

30 .04 .09 .27
*
 .12 .14 .24

**
 .03 .20

*
 .23 .25

*
 .21 -.04 .15

*
 .16

*
 .16

*
 .17

*
 .11 .23

**
 

.17
*
 

31 .09 .09 .21 .03 .11 .06 .24
**
 .10 -.06 -.08 -.07 .07 .15

*
 .06 .22

**
 .13 .13

*
 .09 .26

**
 

32 .08 .23 .21 .11 .09 .16 .24
**
 .23

**
 .19 .16 .24 .15 .16 .27

*
 .14 .22 .15 .19

*
 .41

**
 

33 .00 .23 .01 -.10 .08 .15 .04 -.03 -.05 .05 .11 .00 .07 .19 -.04 .01 .21 .21 .16 

34 .17 .18 .23 .08 .16 .19 .10 .01 .09 -.06 .04 .26
**
 .28

*
 .13 .30

*
 .06 .09 .16 .16 

35 .06 .19 .17 -.03 .13 .19 .19 .12 .15 .05 .09 .22
*
 .14 .09 .21 .27

*
 .16 .00 .20 

36 .10 .17 .36
**
 .19 -.01 .22

**
 .36

**
 .23 .05 -.13 .12 .25

**
 .11 .19

**
 .23

**
 .01 .27

**
 .30

**
 .30

*
 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
Note - .00 correlations go beyond 2 decimal places 
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Item 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

20 1.00                                 

21 .24
**
 1.00                               

22 .15 .03 1.00                             

23 .16
*
 .09 .27

**
 1.00                           

24 -.02 .01 .20
*
 .30

**
 1.00                         

25 .10 .17
*
 -.12 .24

**
 .22 1.00                       

26 .25
*
 -.15 .14 .20 .04 .15 1.00                     

27 .16
*
 .19

**
 .21 .05 .14 .12 .14 1.00                   

28 .20
**
 .23

**
 .33

*
 .18

*
 .18 .27

**
 .22

*
 .19

**
 1.00                 

29 .21
**
 .36

**
 .29

*
 .17

*
 .11 .29

**
 .14 .27

**
 .29

**
 1.00               

30 .14
*
 .20

**
 .01 .07 .25

*
 .23

**
 .00 .07 .23

**
 .19

**
 1.00             

31 .14
*
 .17

*
 .01 .17

*
 .14 .12 .31

*
 .16

*
 .10 .29

**
 .14

*
 1.00           

32 .16 .21 .35
**
 .28

*
 .47

**
 .28

*
 .18 .39

**
 .35

**
 .31

**
 .26

**
 .10 1.00         

33 .15 -.07 .08 .17 .01 -.04 .21 .11 .31
*
 .12 -.08 .17 .02 1.00       

34 .14 .09 .05 .21
*
 .03 .16 .19 .16 .26 .18 .00 .35

**
 .10 .10 1.00     

35 -.03 .10 .17 .27
**
 .11 -.05 .10 .12 .27

*
 .10 -.10 .03 .34

**
 .10 .26

**
 1.00   

36 .26
**
 .15

*
 .14 .25

**
 .16 .23

**
 .12 .05 .29

**
 .24

**
 .15

*
 .20

**
 .41

**
 .14 .08 .04 1.00 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
Note - .00 correlations go beyond 2 decimal places 
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Table 3. Rasch Model Item Difficulty Estimates and Fit Statistics. 

Item b S. E. Lower CI Upper CI Infit 

1 -0.42 0.25 -0.90  0.06 1.07 
2 -0.30 0.25 -0.79  0.18 1.02 
3  0.09 0.27 -0.44  0.62 0.89 
4 -0.40 0.25 -0.88  0.09 1.05 
5 -0.44 0.23 -0.90  0.01 1.08 
6 -0.58 0.24 -1.05 -0.11 0.88 
7 -0.02 0.25 -0.52  0.47 0.96 
8 -0.04 0.25 -0.54  0.46 0.88 
9 -0.09 0.23 -0.55  0.37 1.08 
10 -0.55 0.22 -0.99 -0.11 0.95 
11  0.54 0.30 -0.04  1.12 0.96 
12  0.45 0.28 -0.10  1.01 1.01 
13 -0.09 0.26 -0.59  0.42 0.95 
14 -0.44 0.25 -0.94  0.05 0.82 
15  0.60 0.32 -0.03  1.22 0.90 
16  0.45 0.30 -0.14  1.04 0.93 
17 -0.37 0.24 -0.85  0.10 0.88 
18 -0.28 0.24 -0.75  0.19 1.00 
19  0.27 0.28 -0.28  0.82 0.84 
20  0.60 0.31 -0.01  1.21 0.99 
21 -0.27 0.23 -0.72  0.19 0.91 
22  0.00 0.25 -0.48  0.48 0.91 
23  0.58 0.31 -0.02  1.18 0.90 
24  0.13 0.25 -0.37  0.63 0.91 
25 -0.11 0.26 -0.61  0.39 0.97 
26 -0.11 0.25 -0.61  0.39 1.02 
27 -0.02 0.26 -0.53  0.48 0.94 
28 -0.11 0.26 -0.62  0.40 0.87 
29 -0.22 0.24 -0.69  0.26 0.95 
30  0.06 0.25 -0.43  0.56 1.11 
31  0.58 0.31 -0.03  1.18 1.00 
32  0.65 0.33  0.01  1.30 0.83 
33  0.47 0.28 -0.08  1.02 1.11 
34  1.23 0.45  0.35  2.12 0.88 
35  0.70 0.32  0.07  1.33 0.98 
36  0.37 0.28 -0.17  0.91 0.97 

CI ï 95% Confidence Interval 
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Table 4. Descriptive Statistics of Item Features. 

Item feature N Min Max Mean 
Std. 
Deviation 

Phonotactic Probability 36 -1.44  1.54 0.20 0.65 
Neighborhood Density 36  0.00 13.00 1.94 3.33 
Number of Syllables 36  3.00   5.00 4.00 0.83 
Consonant Clusters 36  0.00   1.00 0.36 0.49 
Number of Phonemes 36  5.00 11.00 8.44 1.98 
Begins with a Vowel 36  0.00   1.00 0.28 0.46 
Ends with a Vowel 36  0.00   1.00 0.69 0.47 

 

 



 

 
 
 

Table 5. Inter-Feature Correlations and their Correlations with Proportion Correct. 

 

 

 PP ND 
Number 
Syllables 

Number 
Phonemes 

Consonant 
Clusters 

Begin 
Vowel 

End 
Vowel 

Proportion 
Correct 

Phonotactic Probability(PP)  1.00        

Neighborhood Density(ND)  0.03  1.00       

Number of Syllables  0.55** -0.36*  1.00      

Number of Phonemes  0.62**  0.60**  0.72** 1.00     

Consonant Clusters  0.49**  0.49** -0.01  0.49** 1.00    

Begins with Vowel -0.40*  0.06  0.01  0.40* -0.35* 1.00   

Ends with Vowel -0.01  0.32*  0.11 -0.19 -0.20 -0.8 1.00  

Proportion Correct -0.26*  0.53** -0.42** -0.74** -0.62**  0.27  0.35* 1.00 

*p <.05, **p <.01 

 

6
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Table 6. Regression Model Statistics. 

Model R
2
 Adj. R

2
  p-value Model Comparison 

1 0.29 0.27    
2 0.17 0.15   
3 0.07 0.04   
4 0.33 0.29 0.15 4,1 
5 0.36 0.32 0.06 5,1 
6 0.40 0.35 0.14 6,5 
7 0.38 0.33 0.29 7,5 
8 0.63 0.60 0.00 8,5 
9 0.66 0.62 0.11 9,8 

1 ï Neighborhood Density 

2 ï Number of Syllables 

3 ï Phonotactic Probability 

4 ï Neighborhood Density, Number of Syllables 

5 ï Neighborhood Density, Phonotactic Probability 

6 ï Neighborhood Density, Phonotactic Probability, Neighborhood Density by Number of 

Syllables 

7 ï Neighborhood Density, Phonotactic Probability, Phonotactic Probability by Number of 

Syllables 

8 ï Neighborhood Density, Phonotactic Probability, Number of Phonemes 

9 ï Neighborhood Density, Phonotactic Probability, Number of Phonemes, Consonant 

Clusters 
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Table 7. Regression Model Parameter Estimates. 

 

Model Parameters B S.E. Beta Partial Correlations 

3 Constant   0.58 0.07   
 Neighborhood Density   0.03 0.01  0.54  0.56 
 Phonotactic Probability -1.33 0.69 -0.27 -0.32 
      
8 Constant   0.46 0.04   
 Neighborhood Density  -0.02 0.01  -0.26 -0.22 
 Phonotactic Probability   2.44 0.94   0.50  0.42 
 Number of Phonemes  -0.13 0.03 -1.21 -0.65 
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Table 8. Rasch and LLTM Model Summary Statistics and Final Model Results. 

 

Model -2 ln L AIC Parameters 
Model 
Comparison r R

2
 

Rasch 2501.39 2591.24 35 
 

  

LLTM1 3067.01 3069.03 1  .32 .10 

LLTM2 2954.59 2956.61 1  .51 .26 

LLTM3 2747.43 2749.45 1 
 

.78 .62 

LLTM4 2714.99 2719.05 2 4*,3 .81 .65 

LLTM5 2743.97 2748.02 2 5,3 .78 .62 

LLTM6 2691.19 2697.30 3 6*, 4 .83 .70 

LLTM7 2642.37 2652.65 5 7*, 6 .89 .78 

R
2 
and r ï correlations between LLTM and Rasch b parameters 

* - model chi-square difference test was significant, p-value < .00001 

LLTM Model Predictors 

1 ï Phonotactic Probability  

2 ï Neighborhood Density 

3 ï Number of Phonemes 

4 ï Number of Phonemes, Phonotactic Probability 

5 ï Number of Phonemes, Neighborhood Density 

6 ï Number of Phonemes, Phonotactic Probability, Consonant Clusters 

7 ï Number of Phonemes, Phonotactic Probability, Consonant Clusters, Begins with a 

Vowel, Ends with a Vowel  
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Table 9. Final LLTM and LLTM with Incidentals Model Summary Statistics and Final 

Model Results. 

 

Model Parameters eta
a
 Std. Error t statistic Partial R

2
 

6 Number of Phonemes  0.43 0.03 16.38* .67 
 Phonotactic Probability -4.36 0.94   4.65* .25 
 Consonant Clusters  0.53 0.08   6.90* .56 
      
7 Number of Phonemes  0.39 0.03 16.38* .73 
 Phonotactic Probability -4.36 0.96   4.65* .31 
 Consonant Clusters  0.53 0.08   6.90* .63 
 Begins with a Vowel -0.63 0.07   9.14* .42 
 Ends with a Vowel -0.25 0.07   3.73* .19 

a - eta values are unstandardized 

*p < .01  
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Table 10. LLTM and Rasch Item Parameters Estimates. 

Item LLTM b Rasch b LLTM* b 

1  1.16  1.32  0.87 
2  1.36  0.85  1.21 
3 -0.55 -0.34  0.03 
4  1.01  1.22  0.67 
5  1.10  1.28  1.24 
6  1.33  1.83  1.19 
7 -1.17  0.00 -0.53 
8  0.97  0.03  0.63 
9  1.07  0.44  0.84 
10  1.36  2.56  1.85 
11 -0.79 -1.15 -1.04 
12 -0.68 -0.96 -0.96 
13  1.20  0.15  0.76 
14  0.45  1.43  0.70 
15 -0.91 -1.54 -0.97 
16 -1.09 -1.22 -1.35 
17  0.44  1.03  0.92 
18  0.46  0.72  0.94 
19 -0.99 -0.73 -1.28 
20 -0.84 -1.47 -0.84 
21  0.83  1.04  1.30 
22 -0.40  0.18 -0.50 
23 -1.06 -1.24 -0.45 
24 -0.74 -0.17 -0.76 
25 -0.42  0.22 -0.51 
26  0.07  0.22 -0.06 
27 -0.21 -0.03  0.06 
28 -0.35  0.22 -0.05 
29 -0.52  0.54 -0.66 
30 -0.28 -0.24 -0.32 
31 -0.20 -1.43 -0.34 
32 -1.38 -1.60 -1.65 
33 -0.32 -1.00 -0.43 
34 -1.32 -2.58 -1.61 
35 -0.55 -1.49 -0.67 
36 -0.41 -0.77 -0.73 

b ï IRT difficulty parameter estimates, rescaled to mean of 0 and standard deviation of 1 

LLTM ï Final LLTM model 

LLTM* - Final LLTM model + incidentals 
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Figure 1. Baddeleyôs (2000) Multicomponent Model of Working Memory 
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Figure 2. The Phonological Loop (Baddeley et al. 1998). 
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Figure 3. Empirical Versus Model Implied Item Characteristic Curves. 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM00x1

a =  1.000 b = -0.421 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM00x2

a =  1.000 b = -0.302 

Item x1 

Item x2 



 

76 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0006

a =  1.000 b =  0.090 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM00x3

a =  1.000 b = -0.397 

Item x3 

Item x4 



 

77 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM00x4

a =  1.000 b = -0.445 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM000x5

a =  1.000 b = -0.578 

Item x5 

Item x6 



 

78 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM00x6

a =  1.000 b = -0.025 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM00x7

a =  1.000 b = -0.037 

Item x7 

Item x8 



 

79 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM00x8

a =  1.000 b = -0.087 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM00x9

a =  1.000 b = -0.553 

Item x9 

Item x10 



 

80 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x10

a =  1.000 b =  0.541 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x11

a =  1.000 b =  0.454 

Item x11 

Item x12 



 

81 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x13

a =  1.000 b = -0.445 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x12

a =  1.000 b = -0.087 

Item x13 

Item x14 



 

82 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x14

a =  1.000 b =  0.596 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x15

a =  1.000 b =  0.454 

Item x15 

Item x16 



 

83 
 
 
 

 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x16

a =  1.000 b = -0.373 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x17

a =  1.000 b = -0.279 

Item x17 

Item x18 



 

84 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x18

a =  1.000 b =  0.268 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x19

a =  1.000 b =  0.596 

Item x19 

Item x20 



 

85 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x20

a =  1.000 b = -0.267 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x21

a =  1.000 b =  0.000 

Item x21 

Item x22 



 

86 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x22

a =  1.000 b =  0.577 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x23

a =  1.000 b =  0.130 

Item x23 

Item x24 



 

87 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x24

a =  1.000 b = -0.111 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x25

a =  1.000 b = -0.111 

Item x25 

Item x26 



 

88 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x26

a =  1.000 b = -0.025 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x27

a =  1.000 b = -0.111 

Item x27 

Item x28 



 

89 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x28

a =  1.000 b = -0.219 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x29

a =  1.000 b =  0.064 

Item x29 

Item x30 



 

90 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x30

a =  1.000 b =  0.577 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x31

a =  1.000 b =  0.655 

Item x31 

Item x32 



 

91 
 
 
 

 

 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x32

a =  1.000 b =  0.471 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x33

a =  1.000 b =  1.232 

Item x33 

Item x34 



 

92 
 
 
 

 

 

  

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0034

a =  1.000 b =  0.696 

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

b

Ability

P
ro

b
a

b
il

it
y

Item  Character istic Curve: ITEM0x35

a =  1.000 b =  0.373 

Item x35 

Item x36 



 

93 
 
 
 

Figure 4. Rasch Person by Item Map. 
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Figure 5. Plot of Total Information Function and Standard Error.  
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Figure 6. Plot of b Parameters for Rasch and Final LLTM Model. 
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Figure 7. Plot of b Parameters for Rasch and LLTM Model with Incidentals. 
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APPENDIX A 

PLANNED MISSING DATA DESIGN 
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 syllables pp nd A B C 

1 3 hi hi X X  

2 3 low hi X X  

3 3 hi low X X  

4 3 low low X X  

5 3 hi hi  X X 

6 3 low hi  X X 

7 3 hi low  X X 

8 3 low low  X X 

9 3 hi hi X  X 

10 3 low hi X  X 

11 3 hi low X  X 

12 3 low low X  X 

13 4 hi hi X  X 

14 4 low hi X  X 

15 4 hi low X  X 

16 4 low low X  X 

17 4 hi hi X X  

18 4 low hi X X  

19 4 hi low X X  

20 4 low low X X  

21 4 hi hi  X X 

22 4 low hi  X X 

23 4 hi low  X X 

24 4 low low  X X 

25 5 hi hi X X  

26 5 low hi X X  

27 5 low hi X  X 

28 5 low low X  X 

29 5 hi hi  X X 

30 5 low hi  X X 

31 5 hi low X X  

32 5 low low X X  

33 5 hi hi X  X 

34 5 hi low  X X 

35 5 hi low X  X 

36 5 low low   X X 
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APPENDIX B 

EXAMPLE NONWORD REPETITION TASK 
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