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Abstract 

With the growing popularity of 3d printing in recreational, research, and 

commercial enterprises new techniques and processes are being developed to improve the 

quality of parts created. Even so, the anisotropic properties is still a major hindrance of 

parts manufactured in this method. The goal is to produce parts that mimic the strength 

characteristics of a comparable part of the same design and materials created using 

injection molding. In achieving this goal the production cost can be reduced by eliminating 

the initial investment needed for the creation of expensive tooling. This initial investment 

reduction will allow for a wider variant of products in smaller batch runs to be made 

available. This thesis implements the use of ultraviolet (UV) illumination for an in-process 

laser local pre-deposition heating (LLPH).  By comparing samples with and without the 

LLPH process it is determined that applied energy that is absorbed by the polymer is 

converted to an increase in the interlayer temperature, and resulting in an observed increase 

in tensile strength over the baseline test samples. The increase in interlayer bonding thus 

can be considered the dominating factor over polymer degradation.  
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1. Introduction 

Rapid Prototyping (RP) was originally developed to produce idealized models for 

physical representations of final parts to be produced in more traditional manufacturing 

methods. Making model representation of the final part reduces time and costs so that more 

iterations and refinements can be made resulting in a better design for the final product. As 

this process was improved, more techniques were implemented, and the field was formally 

termed Additive Manufacturing (AM). Materials and deposition techniques vary, but AM 

part creation generally follows the following procedure; 

1) Concept generation- Typically from hand sketches. 

2) CAD modeling- Using a solid modeling software like SOLIDWORKS, NX, or 

Inventor, a digital 3D representation of the desired part is created.  

3) Solid model slicing- the part file is imported to a “slicing” program such as 

Simplify3D, Slic3r, or Cura. These programs generated 2D cross-sections at 

specified intervals normal to the direction of the build platform. From these 2D 

sections a G-code is compiled including the desired print settings and machine 

parameters for the “printer” that the part will be created on. 

4) Part Creation- The G-code is sent to the print machine where the material is 

deposited in the 2D cross-sections. Once the layer is complete the distance from 

the nozzle in which the material is deposited and the completed layer is 

increased by the amount dictated by the slicing program in the previous step 

and the next layer is deposited atop. Each 2D layer is built upon the previous 

layer resulting in a 3D form. 
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Within the AM field, extrusion-based systems will be the focus of the research work 

presented in this paper, primarily Fused Filament Fabrication (FFF). Other terms used by 

this generic process include Melted Extruded Modeling (MEM), Plastic Jet Printing (PJP), 

and the more commonly referred-to term created by Stratasys, Fused Deposition Modeling 

(FDM). 

 

1.1. Fused Filament Fabrication 

Since 2009 FFF has become more popular, when Stratasys’ patent on the FDM process 

expired. There was upsurge in popularity, and online groups such as the RepRap 

community began to form as machines became more affordable. The typical FFF process 

begins when a spool of thermoplastic filament is drawn into a heating block, where the 

temperature of the filament is increased to its glass transition state.  In this viscus state the 

plastic is extruded through a nozzle to the desired location in the build area. The mass flow 

of this thermoplastic is controlled by pressure created by the solid filament as it is fed into 

the heat block via the extruder. Most extruders are comprised of two rollers positioned on 

either side of the filament. One or both rollers are driven by an electric motor. Tension 

between these rollers is usually adjustable to regulate the amount of friction applied to the 

filament. If the fiction is too light the rollers will slip, too much and the filament may 

deform causing blockage, or sever the filament entirely.  To control heat within the system 

the filament it also fed through a cooling block positioned ahead of the heating block to 

maintain the solidity of the filament, thus preventing feeding issues contributed by the 
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softening of the filament. The motion of the nozzle relative to the build plate is controlled 

by motor inputs calculated by the printer’s microprocessor from the G-code tool paths 

created by the slicing program.  

The nature of the build process does present issues with structural integrity of the 

printed part. The interlayer strength is inherently weaker when compared to the filament 

strength which is why parts produced this way display anisotropic properties. To counter 

this it has become common practice to alternate the extrusion rows orthogonally to each 

other in alternating layers. Doing this yields a part with properties more consistent to a 

truly isotropic part in the X-axis and Y-axis directions with strengths closer to the material 

properties.  

The parts also display a “ribbed” outer surface as the cylindrical extrusion is laid upon 

the previous deposition. The effects of this layering process can be reduced by adjusting 

print parameters such as extruder temperature, build environment temperature, layer height 

and the rate of material extrusion. While the ribs may be unwanted due to aesthetic reasons 

they also pose a structural issue, as the two rounded surfaces join each other at a point. The 

intersection of cylindrical filament extrusion paths can also become enclosed within the 

volume of the part creating air pockets. Again the formations of the voids can be reduced 

by adjusting the aforementioned print settings, but both of these flaws concentrate stress to 

the already weaker interlayer bonds. 

These effects can be minimized by the adjustment of the print settings and orienting 

known high stress regions of the part in a manner to take advantage of the isotropic X-Y 

plane. However, they are still a major challenge, impeding the expansion of functional FFF 
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printed consumer products. In that matter lies the scope for this thesis to discover new ways 

to improve printed part quality and help the technology move forward. 

2. Literature Review 

There is extensive research in regards to FFF material properties and uniformity. These 

papers investigate the optimization of multiple process parameters including but not limited 

to, print volume temperatures, layer heights, tool paths, and extruder temperatures in order 

to improve mechanical characteristics of FFF printed parts [2-19]. While certain 

characteristics can be improved it is most likely at the expense of another.  

Loads placed on FFF parts normal to the build direction exhibit a 10-65% tensile 

strength to parts with oriented filament rows parallel to the applied load [21]. The interlayer 

strength of a FFF part is dictated by temperature and diffusion of the polymer chains across 

interlayers faces [22-23]. The interlayer bond formations is heavily influenced by the 

polymer interface healing process as discussed by DeGennes and Wool [25-26]. Interface 

healing occurs when polymers on both sides of a junction perform wetting, diffusion, and 

randomization. Once healed the junction between the two faces become indistinguishable.  

If this can be achieved in a FFF printed part the orientation in which it was constructed 

would no longer have an effect on the strength and can be considered isotropic. 

The previous work performed by Hsu and Ravi explored this healing process by 

incorporating an infrared laser in to the build process to inject heat directly onto the layer 

interface. The outcome proved that LLPH increased the interlayer temperature resulting in 

a greater strength and higher ductility [1]. It can be noted that this process will only work 

with polymers that contained a pigment or other additive that would absorb infrared light 
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energy, such as carbon black, as the infrared energy is not absorbed by the polymer itself. 

To expand the range of materials to be used the transmission spectrum of different 

polymer-matrices, such as acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), 

were analyzed. Typically the absorption percentage of the light energy is quite high until 

the range of ultraviolet where there is a sharp decrease. By utilizing a laser within the range 

of higher absorption, the efficiency at which the increased energy applied to the substrate 

is increased. This greater energy absorption will either result in an increase in temperature, 

or the scissoring and cross-linking of the molecular chains of the polymer. Because of its 

proximity to this range in the spectrum a 404nm laser diode was selected to determine 

which of these factors has a greater role in the strength of the printed part.      
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3. Goal of Thesis 

Given the low visible to near-IR wavelength absorption issues existing most 

engineering polymers, an approach to increase absorption of optical energy in un-filled 

polymers, an approach of shifting heating laser wavelength to near-UV is proposed. 

However, the effectiveness of UV illumination on polymer surfaces hinges on the mode of 

energy into which photon energy is coupled.  When UV photons impinge on polymer 

surfaces, the photon energy can (1) be coupled into vibration modes of atomic bonds within 

monomer, or (2) be coupled into the vibration of monomers themselves. It is vital to 

determining the relative effect of both to determine the effectiveness of using UV in the 

LLPH approach. 

The hypothesis in our study is, therefore, that the interaction of ultraviolet (UV) laser 

illumination during the LLPH process will result in the interlayer strength increasing at a 

greater rate than polymer degradation caused by molecular chain scissoring and cross-

linking. We will experimentally determine the effect of heating and degradation by 

implementing a dual lasers array on a desktop 3D printer the energy can be directed to pre-

deposition and post-deposition along the X-axis of travel to provide a larger coverage of 

the movements of the nozzle during operation.   

The rest of this paper documents the procedures for the tensile testing, and surface 

morphology using SEM images. A discussion of observed results will determine is process 

can be considered feasible, and will be followed by recommendations for future work. 
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4. Design of Experiment 

4.1. Machine Selection 

Machine selection was important to give a good foundation to build the experimental 

apparatuses. The Type A Machines Series 1 Pro was selected for the following reasons; 

Cartesian based orientation with the X-axis motion and the Y-axis motion in the same plane 

which reduces the complexity of the laser fixture. The sturdy all metal frame to resist 

unwanted vibrations. Heated bed and all metal hotend design allow for a greater range of 

thermoplastic materials to be studied. Linear rails provide smooth and accurate motion. 

Modification friendly warranty should and of the stock components suffer from reliability 

issues. 

4.2. Test Coupon Design 

To compare the effect of the UV radiation emission to the material the test coupon was 

designed to undergo tensile loading test. In Figure 1 a CAD model created using 

SOLIDWORKS. 

 

Figure 1: CAD model of test coupon 
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 The configuration is dog-bone in shape with the dimension of 40mm in length, 10mm 

width, 5mm thickness, 5mm gauge width, and an 18mm gauge length. The slender profile 

in the center ensures a break near the middle of the part away from the mounting jaws of 

the tensile tester machine. 

4.3. Print Setting Selection 

Print settings were chosen in the follow manner. A 20mm wide, 20mm thick, 70mm 

length block was drawn in SOLIDWORKS and imported in to Simpify3D. The block was 

set to print as a single wall entity and a spiral outer layer with the extruder temperature 

initially set to 270ϊC the lower temperature limit as specified by the filament manufacturer. 

Every 10mm of the print the extruder temperature was set to increase by 5ϊC until the upper 

temperature limit of 300ϊC as specified by the manufacturer was reached.  Upon 

completion the block was visually inspected for print quality consisting of layer adhesion, 

discoloration, material clumping, and voids. Next to determine the extrusion multiplier 

another block of similar dimensions and print setting is printed at the newly established 

extruder temperature. The extrusion multiplier is initially set at 85% and increased by 5% 

every 10mm until 115%.  Once again the block is visually inspected and the setting that 

yielded the highest quality is selected. To promote bed adhesion the bed temperature was 

set to 125ϊC, 3M Scotch-Blue painters tape was applied to the glass surface along with a 

coating of Elmer’s All Purpose Glue Stick. Several verification prints were completed with 

the new settings to confirm part quality. Table 1 outlines the full set of print settings for 

the test coupons. 
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Table 1: Print Settings 

Print Parameters Values 

Nozzle Diameter 0.4mm 

Extrusion Multiplier 90% 

Retraction Distance 3.0mm 

Retraction Vertical Lift 1.0mm 

Retraction Speed 2400.0mm/min 

Layer Height 0.2mm 

Top Solid Layer 3 

Bottom Solid Layers 3 

Shells 0 

Skirt Yes 

Raft Yes 

Infill Pattern Rectilinear 

Interior Fill Percentage 100% 

Outline Overlap 20% 

Infill Extrusion Width 100% 

Minimum Infill Length 3.0mm 

Infill Angle Offsets 0 

Primary Extruder Temp 285c 

Heated Bed Temp 120c 

Fan Speed 255 

Default Printing Speeds 300, 600, 900 mm/min 

Outline Underspeed 60% 

Solid infill Underspeed 100% 

Filament Diameter 1.75mm 
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4.4. Fixture Design 

The laser diode sourced is a 404nm solid-state laser with and output power of 400mW, 

housed in and adjustable laser diode collimation tube. With this compact packaging 

multiple laser diodes and housings can be mounted to the print-head and angled to provide 

an unobstructed line of sight to within 1mm of the extruded material.  Figure 2 shows a 

CAD representation of the laser array assembly mounted to the existing print-head with 

the four laser diode assemblies installed, but only two were utilized for this group of 

experiments. 

 

Figure 2: CAD Model of Laser Array Assembly 
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4.5. Establish Material Properties Baselines 

In order to establish a baseline a test coupon specified in Figure 1 is oriented with the 

broad side flat against the print bed. Doing this will align the extruded filament path in the 

axial direction of the part. This orientation places less stress on the interlayer-bond as the 

force carried the continuous material pathway, resulting in a tensile ultimate strength closer 

to that of an injection molded part of the same material. Table 2 outlines the speed, number 

of sample, and laser power used for the material baseline.  

Table 2: Material Baseline Samples 

Print Speed (mm/s) Number of Sample Laser Power (mW/laser) 

10 5 0 

10 5 363 

 

4.6. Varying Energy Density 

 There are two main factors in the Energy Density (ED) the laser radiates to the 

material substrate. The first is the print speed, since the lasers are mounted to the print head 

the ED applied will be inversely proportional to the velocity. The second is the laser power 

which is directly proportional to the ED. Three groups of samples were created. Each group 

the print speed was held constant 5mm/s, 10mm/s, and 15mm/s. Within each group the 

laser power was adjusted to five different settings 0mW/laser, 100mW/laser, 200mW/laser, 

300mW/laser, and 363mW/laser. Five samples were printed for each power level. Table 3 

outlines the part build parameters created for each group. 
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Table 3: Part Build Parameters 

Group  Print Speed (mm/s) Number of Samples Laser Power (mW/laser) 

1 5 5 0 

1 5 5 100 

1 5 5 200 

1 5 5 300 

1 5 5 363 

2 10 5 0 

2 10 5 100 

2 10 5 200 

2 10 5 300 

2 10 5 363 

3 15 5 0 

3 15 5 100 

3 15 5 200 

3 15 5 300 

3 15 5 363 

 

 

 



13 

 

4.7. Interlayer Failure Behavior 

By performing tensile stress test on the sample coupons using an Instron 3300 Single 

Column Universal Testing System, test data will be logged. This data will be further 

analyzed in-depth will be performed to compare test sample fracture behavior to baselines. 

4.8. Fracture Surface Morphology 

In order to closer analyze the fractured surfaces coupons Scanning Electron Microscope 

(SEM) was utilized. The parts first underwent titanium sputtering deposition. This thin 

layer of conductive titanium prevented the part from becoming charge with the electron 

beam allowing for a cleaner image. The magnified images will help determine if polymer 

diffusion has occurred. 
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5. Results and Discussion 

Figure 3 displays results from the tensile stress test of the samples of the baseline FFF 

process and the LLPH FFF process. Both samples were printed at the 15mm/s, the latter 

with laser power 363mW per laser. Results show a slight increase of approximately 11% 

between the two sample averages max tensile stress in favor of the laser treated sample. 

With the only difference between these two samples being the added laser energy the 

increase in strength can be contributed to a greater interlayer temperature which promoted 

diffusion of the polymer chains across the surface interfaces. This is an indication that the 

absorbed energy from the laser that is converted into heating the polymer has greater effect 

on the overall part strength than the energy that is converted to scission and cross-linking. 

Both samples still show brittle fracture behavior evident by the sharp transition from the 

linear increase in stress to the vertical drop off as the part failed.  

The plateau of the strain-strain that occurs between the 5-7Mpa was observed in all test 

samples performed on this particular Instron tensile machine and is a characteristic of the 

machine itself and not the print process. It can also be noted that there is spread in the 

maximum tensile stress between samples within the same group. The FFF process is a 

dynamic and with variations of diameter and quality of the print media it is possible for 

different defects to occur. These defects are non-uniform and can vary layer by layer 

causing weak points in the print, thus causing variation in the of the maximum stress 

observed. 
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Figure 3: Stress Strain Plot for 0mW, and 363mW at 15mm/s 

  

Figure 4 is a consolidation of the 3 print groups, including data for each power 

setting ranging from 0-363mW per laser. It is apparent from the baseline data from each 

group that there is a natural increase in the average maximum stress recorded. This can be 

attributed to the decrease in time it takes to complete one layer of the print before the nozzle 

deposits the next layer. This decrease in time means less energy is dissipated due to heat 

transfer allowing the previous layer to maintain a higher interface temperature, increasing 

the possibility for interlayer diffusion. As the polymers chains diffuse across the interface 

the material heals and the strength become more of a factor of the material properties than 

the defects of the surface interactions. It can also be noted that each group has an overall 

increasing trend as the laser power is increased. This upwards trend indicates that the 

energy UV laser illuminated on the surface is being converted to heating the substrate 

promoting diffusion at greater rate than the polymer degradation is occurring. As both of 

the modes of energy conversions are taking place simultaneously the net sum of the effects 

results in a positive strengthening the interlayer bonds. As the power of the laser is 
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increased the amount of scission and eventually crosslinking will also increase. The 

increase in crosslinking will result in the polymer chains being less able to slide past each 

other reducing ductility. With less plastic deformation generally the effects of defects print 

defect become more pronounced and part strength is decreased.   

 

Figure 4: Average Max Stress 
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When Figures 5 and 6 are compared there is a considerate difference in the 

appearance of the surface of the fractures. Figure 5 is printed at 5mm/s, and Figure 6 at 

10mm/s, both have a laser power setting of 0mW. From this it can be determined that the 

air pockets in Figure 6 cannot be attributed to the UV laser. The smooth surface in Figure 

5 shows that little to no interlayer diffusion as there are no signs of feathering which are 

present in Figure 6. When the averages of the 10mm/s 0mW sub-group is compared to the 

5mm/s 0mW there is a 12% increase in the maximum stress as the speed is increased even 

with the decrease surface area due to the air pockets. 
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Figure 5: 5mm/s 0mW Surface Morphology 

 

Figure 6:10mm/s 0mW Surface Morphology 
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Figures 7 and 8 are printed at 15mm/s and a noticeable increase in the density of 

the air pockets when compared to Figure 6. Figure 7 is print without laser power while 

Figure 8 has a setting of 363mW per laser. When compared it appears the interface between 

the extrusion pathways has been smooth down by the pre-deposition laser. This could 

indicate that the LLPH process not only aid in the interlayer vertically between the previous 

layer and a new deposition over the top but also aid in the side-to-side diffusion with 

parallel rows.    
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Figure 7: 15mm/s 0mW per laser Surface Morphology 

 
 

Figure 8: 15mm/s 363mW per laser Surface Morphology 
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Conclusion 

After comparing the maximum tensile strengths of the baseline FFF 3d printed 

coupons with those in which the in-process localized ultraviolet laser heating process. A 

clear trend is observed that the illumination energy applied by the lasers not only did not 

diminished the strength of the printed parts but actually improved maximum tensile stress 

in spite of the increase number of air pockets within the printed part due to other unknown 

parameters. From this we can derive that the UV energy absorbed and converted in to 

stronger interlayer bonds is more beneficial than the amount of energy that is converted in 

to polymer material degradation.is harmful to the 3d printed part. 

Future Work 

The results observed from the SEM were unexpected. Tracking down the source of 

the air pockets and rerunning the experiments would prove beneficial to the further 

understanding of the LLPH with UV laser process. Due to the standard deviation seen with 

in the data replacing the tensile break with the 3-point bend test should possibly yield better 

results. Also with the incorporation of data from tests like the Road Geometry Analysis 

and Embedded Interface Temperature Readings it would possible to make a more definitive 

statement of the effectiveness of the UV laser.   
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