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ABSTRACT 

Anomaly is a deviation from the normal behavior of the system and anomaly 

detection techniques try to identify unusual instances based on deviation from the normal 

data. In this work, I propose a machine-learning algorithm, referred to as Artificial 

Contrasts, for anomaly detection in categorical data in which neither the dimension, the 

specific attributes involved, nor the form of the pattern is known a priori. I use 

RandomForest (RF) technique as an effective learner for artificial contrast. RF is a 

powerful algorithm that can handle relations of attributes in high dimensional data and 

detect anomalies while providing probability estimates for risk decisions.  

I apply the model to two simulated data sets and one real data set. The model was 

able to detect anomalies with a very high accuracy. Finally, by comparing the proposed 

model with other models in the literature, I demonstrate superior performance of the 

proposed model.  
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1 INTRODUCTION 

Anomalies are patterns in data that do not conform to the expected normal data 

behavior. There are three categories of anomalies: point anomalies, contextual anomalies 

and collective anomalies. In this thesis, I consider only point anomalies. Point anomalies 

are individual instances or a small group of instances whose behavior are significantly 

different from the normal behavior of the rest of the data. Anomalous points negatively 

affect the result of analysis. Therefore, it is important and critical to identify those points. 

In addition, identifying anomalous points helps the analyst further investigate the source 

of anomalies. 

Anomaly detection has broad applications in different industries, such as finance 

for credit card and loan applications, fraud detection, intrusion detection, production line, 

marketing, supply chain management, etc. Many statistical and machine learning 

algorithms have been developed to detect anomalies in different types of data sets (e.g. 

numerical data set, mixed of numerical and categorical data sets and categorical data sets). 

Although there exist different supervised and semi-supervised methods that can detect 

anomalies, unsupervised learning techniques such as clustering have been used widely in 

anomaly detection because in real applications we rarely have data labels that classify 

normal and anomaly instances; and unlabeled data can only be handled by unsupervised 

techniques.  

On the other hand, supervised methods have capabilities that could help us to build 

accurate models. For example, supervised techniques could capture attributes’ relations, 

and by using feature selection methods, those methods could identify important variables 

and transform a high-dimensional data set to a low-dimensional one. Therefore, having a 
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supervised method that could be applicable on unlabeled data would be a great opportunity 

in using supervised learning models’ advantages while unsupervised models are perfect for 

our data.  

Many researches have used statistical methods for anomaly detection of numerical 

data. However, it is non-trivial to extend these techniques to the case of categorical feature 

values. It is common to find areas such as computer networks, security, financial 

transactions, marketing, supply chains, and so forth where data is primarily categorical or 

mixed categorical and numerical in nature. Thus, there is a need to develop an anomaly 

detection method that can handle categorical data.  

In this study, I use Artificial Contrast (AC) method that essentially converts an 

unsupervised problem to a supervised one by contrasting the normal data with the 

anomalous data. The artificial contrast method with a suitable supervised learner can help 

detect patterns in the data, and distinguish normal data from anomalous data.  

Feature selection techniques will then be employed to identify the features involved 

in the pattern. I can also produce a probability estimate of the “normalness” of the instance. 

This method was successfully employed by Hwang et al. [1] in converting the classical 

multivariate control chart monitoring problem into a supervised learning problem. The 

focus of the reference was numerical data. I extend the idea here to our case of categorical 

data. 

The remainder of the thesis is organized as follows: in section 2 I review previous 

works on anomaly detection in categorical data set. In section 3 I investigate different types 

of anomalies and determine how we can choose an appropriate model based on the data set 

that we have. Section 4 is about my proposed algorithm and the experiment that I have 
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done on two simulated datasets. I also apply the model on a real dataset and compare the 

model with three other models. Section 5 has conclusion and future works. 

1.1 What Is Anomaly/Outlier? 

Anomalies are patterns in data that do not follow the normal behavior of the data. 

A data set could have anomalies for different reasons such as malicious activity, credit card 

fraud, cyber-intrusion, terrorist activity or breakdown of a system [2]. Anomalies represent 

abnormal behavior of system, so it is important to figure out anomalies and the causes of 

the those points.  

 An anomaly can represent a problem in an image such as a land mine. It could be 

a signal that shows an intruder inside a system with malicious intensions. Anomalies in 

production systems could be faults in production lines that could be identified by 

monitoring specific features of products and comparing the results with the normal 

products data. In credit card application, anomalies could show an abnormal behavior of 

cardholder. Anomaly detection techniques could monitor customers’ purchasing behavior 

and detect abnormal transactions. Anomalies may show stolen credit card or a real change 

in a customer purchasing habits. In addition, in phone monitoring, customers’ phone usage 

is tracked and if a usage does not follow the customer’s usage pattern, it will be considered 

as an anomaly. In some cases such as loan application and social security payments, 

anomaly detection techniques help to detect anomalies before application approval or doing 

any payments.   

An unusual computer network traffic pattern may be showing that the computer has 

been hacked and is sending data to unauthorized users [3]. In MRI, the presence of tumor 

creates anomalous parts in the image that help specialists to recognize those tumors [4]. In 
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credit card transactions, anomalous instances show a different usage of credit card that 

could be because the card or the credit card’s information has been stolen [5]. 

In this section, I briefly describe some applications of anomaly detection: 

1.2 Fraud Detection 

Fraud refers to abnormal activities that occur in organizations such as banks, 

insurances, stock markets etc. Fraud detection is a technique that can detect these activities. 

Fraud could be done by an actual customer or by another person that has stolen customer’s 

information and are working with the organization’s products/services without consent in 

a shape of customer. It is very important for organizations to detect these activities in an 

early stage, because it prevents them from losing much money. I discuss more about fraud 

in different organizations. 

1.3 Credit Card Fraud Detection 

Credit card fraud is one of the most important fraud that has taken many 

considerations in financial institutions. Credit card fraud causes huge financial loses; in 

addition to costs associated with the thieves’ spending, the costs of issuing new credit or 

debit card and sending those cards to customers are high too. Fraud losses in US during 

2013 was about $7 billion dollars [6]. According to fraud statistics in creditcard.com, in 

2014 in US, 90% of people who were victim of fraud request a new card that cost for the 

financial institution about $ 12.75 per card. Credit card fraud can occur in different ways: 

credit card could be stolen itself, or its information could be stolen during online 

transactions or by online hackers, and it could occur with counterfeit credit card. Statistics 

show that about 45% of credit card frauds occur in online transactions [7]. To find the 
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frauds, banks and financial institutions should have an algorithm that could detect frauds 

at the time it occurs and learn the fraud patterns for future predictions. To understand more 

about how the methods should work, I prepare a brief explanation of credit card data and 

how a fraud transaction is different from the other ones. 

Credit card usage data includes customer’s purchases records that can be used for 

understanding purchase patterns. Data sets typically have features like user ID, spending 

amount, duration between two credit card usage, location of transaction, etc. If a strange 

transaction happens and that is beyond the scope of normal behavior of a specific customer 

then it is a signal of anomaly. Sometimes, the strange occurrence is not fraud and it is a 

real change in customers’ behavior or a real unique transaction in customer’s life. 

For example, when a customer goes on vacation for a week, the location of 

purchasing would change. On vacation, people usually spend more money and on special 

or new activities such as dining at different restaurants, visiting museums, etc.  

Also, sometimes customer’s life changes and so does his/her spending style. These 

two examples are anomalies, but not a fraud and they are not costly for an organization. 

A type of credit card anomaly that is costly for organizations and must be detected 

is a fraud in which somebody has stolen customers’ information or credit card and is trying 

to make purchases using it.  

1.4 Mobile Phone Fraud Detection 

In phone fraud detection, calling behavior of a user is a reference and if a call occurs 

from a phone user that is not compatible with his/her behavior, it will be detected as an 

anomaly and it appears that the account has been misused. 
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Phone call data sets usually have features related to calls like calling location, 

calling duration, calling time, calling destination, etc. For example, anomaly could be a 

call to a destination that is not in a user’s historical call records, or may be the volume of 

call in a specific duration of time is much higher than user’s call behavior pattern. 

1.5 Insurance Claim Fraud Detection 

 Another type of fraud that causes huge costs to companies is insurance frauds. To 

prevent the associated costs it is worth to have an algorithm that can learn from previous 

claims and predict future fraud, before any claim, with high accuracy. Insurance frauds 

usually occur when a claimant tries to get some advantages from insurance, the advantages 

that otherwise will not be given to them. For example, a person who had a car accident can 

claim something from insurance that is not real. He/she could file more than one claim for 

a specific injury, file a claim for injuries that are not related to the accident, report higher 

costs than real costs for car repairs and report wage losses for the accident while that wage 

losses are not real.   

1.6 Insider Trading Detection 

Another application of anomaly detection techniques is detecting insider trading in 

an early stage. Insider trading is a phenomenon found in stock markets, where people make 

illegal profits by acting on (or leaking) inside information before the information is made 

public. The inside information can be of different forms [8]. It could refer to the knowledge 

of a pending merger/acquisition, a terrorist attack affecting a particular industry, pending 

legislation affecting a particular industry, or any information that would affect the stock 
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prices in a particular industry. Insider trading can be detected by identifying anomalous 

trading activities in the market. 

The available data is from several heterogeneous sources such as option trading 

data, stock trading data, news. The data has temporal associations since the data is collected 

continuously. The temporal and streaming nature has also been exploited in certain 

techniques [9]. 

Anomaly detection techniques in this domain are required to detect fraud in an 

online manner and as early as possible, to prevent people/organizations from making illegal 

profits. 

1.7 Industrial Failure Detection 

Continuous usage and normal wear and tear could cause industrial units damage. 

To save money and prevent those damages, it is important for companies to have a system 

that records machines working behaviors and conditions. Anomaly detection techniques 

have been applied in this domain to detect the damages. Companies usually use sensors 

that can record machines operations.  If a machine does not work properly or there is a 

problem in machines’ units, the machine will deviate from its normal operation, so anomaly 

detection techniques could find those problems. 

2 LITERATURE REVIEW OF ANOMALY DETECTION METHODS 

Anomaly detection is an important issue that has been studied in a wide variety of 

areas and applications. There are different methods of anomaly detection. In this section I 

review different anomaly detection techniques that have been developed until now. Also, 

I specifically reviewed the techniques that can handle categorical data set anomalies.  
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2.1 Statistical Model Based 

These methods assume the data instances come from a parametric distribution with 

parameters θ and probability density function f(x,θ) where x is an observation [2]. In these 

methods if a point is out of distribution’s boundaries then it will be considered an anomaly 

or outlier. Example of parametric methods are Gaussian models and Regression models 

[10], [11]. 

Although these methods are efficient for most of single-dimensional and univariate 

data but it has some disadvantages too. One problem with these kind of models is finding 

an appropriate model for different data set and applications is hard. Another difficulty with 

these methods is these models are not efficient for high dimensional datasets [12], [13]. 

Furthermore, in high dimensional data set because the data set is become less dense, it is 

hard for parametric models to determine the convex hull [1]. 

For overcoming these problems, some methods have been developed. Principal 

Component Analysis is one of those methods that could be useful for high dimensional 

data. Also, Ida and Rousseeuw [14] proposed an algorithm that organizes data instances in 

layers. Those instances that are on the shallow layers tend more to be outliers that those 

points on the deep layers [15], [16]. However, these kind of methods still are not efficient 

for more than two dimensions data sets. 

On the other hand, non-parametric methods make fewer assumptions for data 

distributions. Non-parametric methods do not make any assumption about the structure of 

the data and they get the structure from the given data set [2]. Examples of non-parametric 

models are: Histogram based models and Kernel function based models. 
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2.2 Distance Based Model 

One of non-parametric methods is distance-based approaches. These approaches do 

not have any assumptions about data distributions. These methods only use distance 

between points. Although these kind of techniques do not make any assumption about the 

data distribution, but they are not appropriate for high dimensional data, because 

calculating the distance between every points in a data set leads to high computational 

complexity (e.g. nearest neighbor approach that has quadratic complexity with respect to 

the dataset size). 

 

Fig. 1. Distance-Based Method (It Is Hard for Distance-Based Method to Find Local Outlier O2) 

(Adapted from Chandola et al. [2]) 

To overcome this problem, there have been improvements of the original distance-

based algorithms. Kumar [17] proposed a distance-based algorithm that can detect outliers 

in high dimensional dataset. In their work, object O is an outlier if at least a fraction of p 

of all objects are further than a defined distance D from point O.  

Finally, Bay and Schwabacher [18], use randomize data to make an efficient search 

space. Their model helps to have a near linear complexity even though the problem is 

complex quadratic 
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2.3 Classification 

Classification is a technique that learn a model from a labeled training data and then 

classify test data based on the learned model [11]. The model that has been learned from 

training data could distinguish between normal and anomalous instances. Based on the 

number of classes belong to normal data, classification anomaly detection techniques are 

divided into two groups: multi-class and one class. In multi-class classification, it is 

assumed that training data has more than one class [12], [19]. An effective learner could 

distinguish between each normal classes. Moreover, if a point in a test set does not belong 

to none of these classes, then it will be considered as an anomalous point. Bayesian-

Network is an example of multi-class classification technique. Support Vector Machine 

(SVM) have been used for anomaly detection as a one-class method. Neural-Network and 

Rule-Based algorithms work for both one-class and multi-class anomaly detection. 

2.4 Clustering 

Clustering is an unsupervised technique that is used to group similar data instances 

into clusters [11], [20]. Clustering-based techniques could have different assumption for 

similarity of data points but in general, these methods differentiate between groups of data 

that are similar to each other and those points that have different behavior which are 

typically called outliers.  

Some clustering techniques are built based on this assumption that normal instances 

belong to a cluster while anomalies do not belong to any cluster [2]. Clustering techniques 

based on this assumption apply a clustering method on a data set and every points that are 

not in a cluster is considered as an outlier. Clustering techniques like BSCAN [21], ROCK 

[22], and SNN clustering [23] can be used. 



 

11 

Another assumption implies that normal data instances lie close to their closest 

cluster centroid, while anomalies are far away from their closest cluster centroid [2].  

Techniques that are based on this assumption finding anomalies in two steps. First, they 

cluster data points using a clustering algorithm and then they calculate the distance between 

each instance with the centroid of the closest cluster. This distance score is a measure of 

anomaly. There are some clustering algorithms that can detect anomalies based on these 

two steps. Self-Organizing Maps (SOM), K-means Clustering, and Expectation 

Maximization (EM) are the techniques that are working based on these two steps. Smith et 

al. [15] studied these methods for clustering training data and then using those defined 

clusters, they classified test data.  

A disadvantage of this assumption is if anomalies are enough big that can build a 

cluster by themselves, the techniques which are based on this assumption cannot detect 

them as anomalies [2].  

A third assumption is normal data points build large and dense clusters while 

anomalies build small and sparse clusters [2]. Actually, this assumption mitigates the 

problem that assumption 2 has. Techniques that follow this assumption usually have a 

threshold for density of normal clusters. If an instance falls below that threshold, that 

instance would be anomaly. He et al. [22] proposed an algorithm called FindCBLOF, 

which assigns an anomaly score to each data point based on the size of the cluster that point 

belongs to.  

Most of the current algorithms are developed for numerical data set. Therefore, 

when using these methods for analyzing a data set that has mixture of numerical and 

categorical variables, we miss the information that categorical variables have and our 
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analysis will not be accurate. In this section, I reviewed multiple algorithms that have been 

developed to find anomalies in categorical data sets. Ghoting et al. [24] proposed an 

algorithm called LOADED that can detect anomalies in data set that have both numerical 

and categorical variables. They consider the link between two categorical variables as a 

sign of their relationships and the number of common attributes and values between two 

variables as a strength of the links. A point is considered an outlier if they have less links. 

They assign a score to each point based on their links to other points. Based on that score, 

anomalous instances could be recognized.  

He et al. [25] proposed an algorithm called Frequent Pattern (FP) outlier detection. 

The method detects the frequent patterns of a data set with association mining. For each 

transaction it computes a score called Frequent Pattern Outlier Factor (FOPF), if a 

transaction follow the pattern its FPOF is high, otherwise it will be low. The transactions 

that have low FOPF score are considered as outliers.  

He et al. [26] proposed an algorithm that optimized the entropy of the data set. The 

algorithm recognized outliers iteratively and removing those points from data set while 

minimizing the entropy of the target data set. Another approach that can detect outliers in 

categorical data set is to represent the data as a hypergraph. Wei et al. [11] proposed 

hypergraph method in which they found frequent item sets and for each item set they used 

multidimensional array to detect outliers.  

Another approach that is useful for anomaly detection in categorical data sets has 

been proposed by Das and Schneider [27]. In this approach, they used conditional 

probability ratio to detect unusual combination of attributes. This technique detect unusual 

combinations but not rare combinations that sometimes could be anomalies. To detect rare 
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combinations they used marginal probability. They also showed that their method 

outperforms to Bayesian Network, another useful technique in anomaly detection. 

3 APPROPRIATE MODEL FOR ANOMALY DETECTION 

There are some criteria that we should consider when we are choosing an 

appropriate model for anomaly detection. Input data is a very basic criterion that we should 

consider in a first step of each anomaly detection. Considering whether the data set has 

label or not is very impactful on the technique we choose for analyzing our data. Also, 

every applications of anomaly detection has its own limitations and requirements that 

should be considered in choosing an appropriate technique. In this section, I discuss these 

criterions in details and see different aspects of anomaly detection.  

3.1 Data 

One of an important and basic factor in analyzing every data that affects the chosen 

model is data. Data is generally a collection of instances (also referred as object, record, 

point, vector, pattern, event, case, sample, observation, or entity) [12]. Each data instance 

is described with a set of attributes (also referred to as variable, characteristic, feature, field, 

or dimension). The attributes can have different types such as binary, categorical, or 

continuous [2]. Each data instance could be described with one attribute, so we will have a 

univariate model, or a data instance may need more than one attributes to be described, this 

case is called multivariate. In multivariate case, all attributes could be in a same type or 

they could have different attribute types.  

The types of attributes is an important aspect for choosing an appropriate anomaly 

detection technique. For example, in statistical techniques, there are different models that 
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could handle continuous and categorical variables. Based on the nature of data, we could 

select the best model. In addition, for anomaly detection with nearest neighbor techniques, 

the distance measure is determined based on the type of attributes that are involved in the 

model.  

Data instances’ relations categorize input data [12]. Different techniques should be 

applied on different input data. Although most of the current anomaly detection techniques 

are considering point data that there is not any relationships among instances, but data 

instances could have relations with each other, for example sequence data, spatial data, and 

graph data.  

Sequence data has linearly ordered data instances. Time-series data, genome 

sequences, and protein sequences are examples of sequence data. On the other hand, spatial 

data has related data instances. Each data instance in spatial data is related to its neighbors 

instances, for example, vehicular traffic data, and ecological data. Graph data consists of 

vertices which are data instances and those vertices are connected to each other with edges 

[2]. 

3.2 Types of Anomalies 

After understanding the input data and the complexity of the problem, another 

important step is configuring the application and type of anomalies that application could 

have. Anomalies can be classified into following three categories: point anomalies, 

contextual anomalies and collective anomalies. 
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3.2.1 Point Anomalies 

Point anomalies are an individual instance or some few instances that have different 

behavior from rest of the data. For example, in figure 2 below, o1, o2, and o3 are very far 

from the rest of the data, so they are considered as point anomalies. 

 

Fig. 2. Point Anomalies (Adaptted from Chandola et al. [2]) 

As a real example, consider a credit card fraud detection problem. We assume that 

we have a data set that contains the amount an individual person spend with his/her credit 

card. A transaction that has very high amount compared to his/her regular transactions is 

considered as point anomaly. 

3.2.2 Contextual Anomalies 

Contextual anomalies are those points that are considered as anomalous points 

within a specific context, and other than that context, the points may be not anomalous 

instances.  
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To detect contextual anomalies, the data set should have a specific construction. 

We should have two sets of attributes: contextual attributes and behavioral attributes.  

Contextual attributes help to determine the neighborhood for a specific instance. 

We are supposing that an instance follows its neighbor’s behavior, but if the behavior of 

that instance is different from neighbors, so it will be considered as anomaly. 

Example of contextual attributes are longitude and latitude of locations in spatial 

data. In time-series data, the contextual attribute is time that shows the position of an 

instance in entire dataset [2]. 

Non-contextual characteristics of an instance is described with the behavioral 

attributes. For example, in a spatial data set describing the average rainfall of the entire 

world, the amount of rainfall at any location is a behavioral attribute [2]. 

Anomalies are those values from behavioral attributes that are strange in a specific 

context.  

A data instance could have different behavior in different context; it could be 

anomaly in a specific context and could be normal in another context.  

An example of contextual anomalies could be in credit card fraud detection. A 

contextual attributes could be the amount of purchase in a specific location. Suppose a 

customer usually spend $200 weekly for grocery in Sprouts market. If that person spend 

$1000 in a week in that specific store, that is an anomaly, since it does not follow the 

normal behavior of that customer in the context of location, even though that customer 

could spend $1000 on other purchasing in another store and that purchase is considered 

normal.  
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3.2.3 Collective Anomalies 

Collective anomaly is a group of related instances that does not follow the behavior 

of the rest of the data set. Each of the individual instances may not be anomalies by 

themselves, but in a collection with other anomalies, all of them are considered as 

anomalous points. Figure 3 shows a collective anomalies in an electrocardiogram output 

[28]. The highlighted part shows anomalies because the low value exists for a long time. 

We should notice that the low value itself is not considered as anomaly, but when it occurs 

long time then it is abnormal 

 

Fig. 3. Collective Anomalies (Adaptted from Chandola et al. [2]) 

3.3 Labels of Data 

Data labels in a data set determine whether that instance is normal or anomalous. 

Since labeling is usually done by human experts, it is an expensive task. In addition, getting 

labels for normal data instances are easier than having labels for all types of anomalies that 

could occur in a data set. In addition, it is possible that during time different types of 

anomalies could occur that we do not have labels for them in the dataset. Based on the 
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availability of labels for normal and anomalous points we have different analysis methods: 

supervised, semi-supervised and unsupervised. 

3.3.1 Supervised Techniques 

Supervised techniques need labels for both normal and anomalous instances of 

training data set. Typically, a predictive model is built for the data set to classify normal 

and anomalous instances. For any unseen data set, the predictive model is applied to that 

data and the result would be classified instances as normal or anomalies. Example of 

supervised techniques are decision tree, support vector machines, artificial neural 

networks, rule-based techniques, etc. 

There are four issues with supervised techniques that should be considered: 

Bias-variance tradeoff 

A first issue is the tradeoff between bias and variance. Imagine that we have 

available several different, but equally good, training data sets. A learning algorithm is 

biased for a particular input x if, when trained on each of these data sets, it is systematically 

incorrect when predicting the correct output for x. A learning algorithm has high variance 

for a particular input x if it predicts different output values when trained on different 

training sets. The prediction error of a learned classifier is related to the sum of the bias 

and the variance of the learning algorithm. Generally, there is a tradeoff between bias and 

variance. A learning algorithm with low bias must be "flexible" so that it can fit the data 

well. But if the learning algorithm is too flexible, it will fit each training data set differently, 

and hence have high variance. A key aspect of many supervised learning methods is that 
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they are able to adjust this tradeoff between bias and variance (either automatically or by 

providing a bias/variance parameter that the user can adjust). 

Function complexity and amount of training data 

The second issue is the amount of training data available relative to the complexity 

of the "true" function (classifier or regression function). If the true function is simple, then 

an "inflexible" learning algorithm with high bias and low variance will be able to learn it 

from a small amount of data. But if the true function is highly complex (e.g., because it 

involves complex interactions among many different input features and behaves differently 

in different parts of the input space), then the function will only be learnable from a very 

large amount of training data and using a "flexible" learning algorithm with low bias and 

high variance. Good learning algorithms therefore automatically adjust the bias/variance 

tradeoff based on the amount of data available and the apparent complexity of the function 

to be learned. 

Dimensionality of the input space 

A third issue is the dimensionality of the input space. If the input feature vectors 

have very high dimension, the learning problem can be difficult even if the true function 

only depends on a small number of those features. This is because the many "extra" 

dimensions can confuse the learning algorithm and cause it to have high variance. Hence, 

high input dimensionality typically requires tuning the classifier to have low variance and 

high bias. In practice, if the engineer can manually remove irrelevant features from the 

input data, this is likely to improve the accuracy of the learned function. In addition, there 

are many algorithms for feature selection that seek to identify the relevant features and 



 

20 

discard the irrelevant ones. This is an instance of the more general strategy of 

dimensionality reduction, which seeks to map the input data into a lower-dimensional space 

prior to running the supervised learning algorithm. 

Noise in the output values 

A fourth issue is the degree of noise in the desired output values (the supervisory 

target variables). If the desired output values are often incorrect (because of human error 

or sensor errors), then the learning algorithm should not attempt to find a function that 

exactly matches the training examples. Attempting to fit the data too carefully leads to 

overfitting. You can overfit even when there are no measurement errors (stochastic noise) 

if the function you are trying to learn is too complex for your learning model. In such a 

situation that part of the target function that cannot be modeled "corrupts" your training 

data - this phenomenon has been called deterministic noise. When either type of noise is 

present, it is better to go with a higher bias, lower variance estimator. 

In practice, there are several approaches to alleviate noise in the output values such 

as early stopping to prevent overfitting as well as detecting and removing the noisy training 

examples prior to training the supervised learning algorithm. There are several algorithms 

that identify noisy training examples and removing the suspected noisy training examples 

prior to training has decreased generalization error with statistical significance. 

3.3.2 Semi Supervised Techniques 

Semi-supervised techniques need labels just for normal instances and do not need 

that labeled anomalous instances.  
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Because they just need normal instances labels, they are more flexible than 

supervised methods, that need labels for both normal and anomalous data points, and are 

more widely applicable, specifically in applications that just have normal data and it is hard 

to have a pattern for anomalous instances. For example, anomaly in space craft is an 

accident that is not easy to model. The easy way is to have a normal data and build a model 

based on those normal instances. If a data instance in a test set does not follow the normal 

behavior, then it will be considered as anomaly.  

3.3.3 Unsupervised Techniques 

Unsupervised methods do not need any labeled data instances. These techniques 

will find the pattern in a data set without knowing which data instances are normal and 

which ones are anomalous. Based on that pattern the methods can separate the normal 

instances  from anomalous instances. The assumption of these techniques is normal data 

instances are more frequent than anomalous ones. Clustering is an unsupervised technique 

that is widely used in literature and real applications. Clustering methods group objects in 

a way that objects that are in the same group (cluster) are more similar than objects in other 

groups. Hierarchical clustering, k-means algorithm and DBSCAN are examples of 

clustering methods. They use different measurements for clustering instances. For 

example, k-means algorithm uses distance as a measure for clustering. The method groups 

instances while minimizing the distance between points that are in a same cluster  and 

maximizing the distance between points in different clusters.   
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3.4 Output of Anomaly Detection 

One of important aspects of anomaly detection techniques is the output. It is 

important to know how each technique will produce the anomaly output. Typically, we 

have two kinds of outputs: scores and labels. 

3.4.1 Scores 

In these techniques, the output is a ranked list of anomalies. Scoring techniques 

assign a score to each instance of test data. The score shows how that instance is deviate 

from the normal pattern in training data. An analyst can analyze the instances that have 

higher anomaly scores or he/she can use a cut off point (based on the problem and 

application) to select anomalous instances. 

3.4.2 Labels 

Some techniques give a label (normal or anomalous) to each instances in a test set. 

In these techniques we cannot apply a threshold directly anymore, but we can make 

changes in parameter choices in each techniques.   
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4 ALGORITHM 

In this section, I explain artificial contrast as a method that transforms unsupervised 

techniques to supervised ones. As discussed, artificial contrast needs a powerful learner, 

which can distinguish normal and anomaly instances with low error rate. In addition, it 

should give an accurate estimation of class probability.  

4.1 Artificial Contrast 

One way to convert an unsupervised problem into a supervised one is to transform 

a density estimation problem to function approximation and classification. (considered to 

be “statistical folklore”) [29]. Let 𝑓(𝑥) denote the unknown probability density to be 

estimated and 𝑓0 (𝑥) be the reference distribution we want to contrast with. 

Define Y to be the target value and assign 𝑌 =  1 and 𝑌 =  0 for each point drawn 

from 𝑓(𝑥) and 𝑓0 (𝑥), respectively. We draw an equal number of instances from each 

distribution. Applying Bayes’ Theorem yields: 

𝐸(𝑌│𝑥) = 𝑃(𝑌 = 1|𝑥) = (𝑓(𝑥))/(𝑓(𝑥) + 𝑓0 (𝑥))     (1) 

𝐸(𝑌│𝑥) can be estimated by solving the regression problem on the sample (𝑥1, 𝑦1), 

(𝑥2, 𝑦2), … (𝑥2𝑛, 𝑦2𝑛). The calculation in Equation (1) can be easily adjusted to account 

for different sample sizes for the training and reference data sets or for different responses 

other than zero or one. 

Thus, we obtain an estimate 𝑓 ̂(𝑥) of our function𝑓(𝑥). Essentially, the problem 

can now be considered as a two-class problem, and solved using an efficient supervised 

learner together with an appropriate reference distribution. 
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Hwang et al [1] applied artificial contrast to multivariate statistical process to detect 

normal operating conditions from abnormal conditions. Tuv [30] used artificial contrast 

with RF learner to select the best subset of non-redundant features in high dimensional 

dataset. 

4.2 Random Forest 

A good learner for our problem should be able to handle high-dimensional 

categorical data. It should also be able to capture the higher-order interactions that may be 

present between different categorical features. Finally, it should provide a class probability 

estimate. Therefore, I choose Random Forest (RF) here as the supervised classifier [31]. 

Ensemble models are prediction models that are combined of several simpler models. RF 

is an ensemble of tree predictors, each constructed from random sampled training data. The 

RF prediction is the unweighted plurality of class votes (or average prediction for 

regression). RF results could be biased towards variables with more categories. In addition, 

when two variables are correlated, RF randomly uses one of the variables first and so the 

importance of the other variable significantly decreases because the impurity that this 

variable could remove is already removed. To have an accurate RF results, the model 

should have low bias and low correlations between variables.  To keep bias low, trees are 

grown to maximum depth. To keep the correlation low, each tree is grown on a bootstrap 

sample of the training set, and only m attributes are randomly sampled (out of the total of 

p attributes) at each node in each tree. The best split (as measured by class entropy gain) is 

selected among the m candidates. Here m is a tunable parameter, generally kept at a default 

of 𝑝1/2(6). The number of trees used is another tunable parameter (but results are 



 

25 

insensitive to the selected value). Each bagged trees uses about two-thirds of instances and 

the remaining one-third observations are called out-of-bag (OOB) observations. 

We can predict the response of an instance 𝑥𝑖 using each of the trees in which xi is 

OOB. Consequently, we will have multiple predictions for xi. In order to have a unique 

prediction for that instance, we use the majority votes of all predicted responses for 

classification purpose and average of the responses for regression. We can have an OOB 

prediction for each instance of a data set in the same way and from that we can have an 

overall model error called OOB error. OOB error is a valid estimate of test error because 

the response of each observation is predicted using only the trees that were not fit using 

that observation. 

Let T denote the number of trees in the RF. Let 𝑇𝑗(𝑥𝑖) denote the prediction for xi 

from tree j for j = 1, 2, …, T. 

Let 𝑂𝑂𝐵𝑖denote the set of trees with 𝑥𝑖 OOB. The class probability estimate for 

instance 𝑥𝑖 and class k is: 

 �̂�𝑘(𝑥𝑖) =
∑ (𝑇𝑗(𝑥𝑖)=𝑘)𝑗∈𝑂𝑂𝐵𝑖

|𝑂𝑂𝐵𝑖|
       (2) 

The OOB predicted class of instance xi is �̂�(𝑥𝑖)=𝑎𝑟𝑔𝑚𝑎𝑥𝑘 �̂�𝑘(𝑥𝑖). For two classes 

�̂�(𝑥𝑖)=0 if �̂�0 (𝑥𝑖 )>c for a selected constant threshold c. The error rates computed from 

OOB predictions are easily obtained and have been shown to be good estimates of 

generalization error (6). Consequently, OOB error rates and posterior probability estimates 

are used in this work. Finally, RF works well with categorical data sets and can also be 

used to the mixed case of categorical and numerical data. 
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4.3 Methodology 

In this section, I explain the methodology and show how I prepare data set to be 

analyzed with the proposed model. For this study, I should have two unlabeled data sets. 

One original data set that have the data that I want to analyze. I call it 𝐷0 here. Another 

data set that I need is artificial data set that represents the anomalous instances. I call it 

𝐷1. By contrasting these two data sets, we could identify anomalies.  

Dataset 𝐷0 consists of 𝑁0 instances over p features. Let the number of values for 

feature 𝑥𝑗 be denoted as 𝑣𝑗 . Usually we assume that the training data is free of anomalies, 

but in this study my proposed learning algorithm (RF) is robust enough to tolerate a small 

percentage of anomalous instances. The data are unlabeled, but because I am using a 

supervised algorithm, I should have a label for each instances of the data set. I artificially 

assign the label Y = 0 to the instances in 𝐷0. In real applications, usually attributes are not 

independent from each other and have relationship that build a pattern. And this 

constructed pattern helps us to identify anomalous instances. Therefore, I expect 

relationships between the different features in 𝐷0. Consider the following simple example. 

Suppose John usually walks to the gym on Monday. This scenario can be considered to 

define a pattern in the categorical attributes {person, travel type, destination, day of week}. 

If John drives to the gym on Monday we would like to flag this as an anomaly. In this case, 

the anomaly involves four attributes. Because he usually walks on Monday (and only goes 

once a day) we expect the cell corresponding to the attribute values {Rene, drives, gym, 

Monday} to be relatively empty so that an instance suggests an anomaly. It might not be 

unusual for John to drive to the gym on Tuesday, and it might not be unusual for him to 

walk to the grocery store on Monday. On the other hand, Jack may routinely drive to the 
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gym on Monday.  It is only the four-dimensional combination of attribute values that 

generates the anomaly. Neither the dimension, the specific attributes involved, nor the form 

of the pattern is known a priori. Only a training data set of (primarily) normal instances is 

available. Consequently, this simple example illustrates a challenging problem, but one 

that I handle with an efficient solution. 

To construct 𝐷1 I randomly assign values to each categorical feature 

(independently) to generate the reference data set. I also assign the label 𝑌 =  1 to the 

instances in reference data set 𝐷1. For this study, I consider equal number of instances for 

two datasets. However, we should note that 𝑁1 doesn’t necessarily have to equal 𝑁0, 

because in practice this is difficult for the case when we have a large number of categorical 

features, each having a large number of distinct values so that the total possible number of 

cells is much higher than the number of instances (= 𝑁0). However, keeping them equal 

leads to balanced two-class case. If the two data sets have different number of instances, 

we will have imbalanced data set and we should use an appropriate algorithm to mitigate 

that. The overall dataset provided to the learner is the combined set of 𝐷0 and 𝐷1. Thus, 

the supervised learner can easily learn the underlying relationship among attribute sets and 

distinguish between patterned instances and anomalies. Actually, by contrasting 𝐷0 and 

𝐷1our algorithm could classify the anomalies of original data set (𝐷0) as 𝐷1 and separate 

patterned instances from outliers. 

As I discussed, one of the advantages of RF is it gives class probability for each 

instances. Now given an input instance 𝑥𝑖, the learner provides a class probability estimate 

for each class 0 and class 1, so it shows us 𝑥𝑖 is classified as which classes.  �̂�0(𝑥𝑖) is 

probability of instance 𝑥𝑖 is in class 0.  
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Thus, we can set a probability threshold value c such that 

�̂�0(𝑥𝑖) ≥ 𝑐          (3) 

above which the instance is assigned to class 0. An important step is to determine the value 

of c. To have an accurate result we should fins an optimum c that decrease false positive 

rate (proportion of negative instances that classified as positive) and increase true positive 

rate (proportion of positive instances that correctly classified as positive).  

The Receiver Operating Characteristic (ROC) will guide us to choose the value of 

c that leads to the optimal model. ROC curve is empirically generated from the training 

data and illustrates the performance of a binary classifier as under various values 

discrimination threshold values [32] 

The curve is created by plotting true positive rate against false positive rate at 

different level of threshold. The best threshold for the model is the one that maximize the 

area under the curve. 

 

Fig. 4. Example of Roc Curve 
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For my problem, false positives are defined as an instances 𝑥𝑖 ∈ 𝐷0  s.t.  �̂�0(𝑥𝑖) <

𝑐. It means that instances that are really belong to class 0 but the probability of being in 

class 0 is less than the defined threshold, so it will be classified as class 1. True positives 

are defined as instances 𝑥𝑖 ∈ 𝐷0 s.t. �̂�0(𝑥𝑖) > 𝑐. It means that instances that are belong to 

class 1 correctly classified as class1.  

When we generate random data, there is a possibility of a random instance being 

associated with a normal cell (in 𝐷0). Thus, one can expect a number of instances in 𝐷1 to 

be assigned to class 0. I call these instances false negatives (proportion of positive instances 

that classified as negative). Such false negatives are the result of the random process used 

to generate the data, rather than the classifier performance. The value of c is not too 

sensitive to the presence of pseudo-normal as can be verified experimentally.  
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Fig. 5. Steps of the Algorithm 

4.3.1 Experiments 

To show the effectiveness of our model, I apply it to three simulated datasets and 

one real application. All of the analyses are carried out using R 3.3. Details of the packages 

and functions used for each analysis are included in Table 8 at the end of this document. 

In this section I discuss each data set and how the simulated data sets have been 

generated and also the results. 

Low Dimensional Data Set 

The first data set is a low-dimensional one with two categorical features, denoted 

as 𝑥1 and 𝑥2, each having 20 distinct values. The 𝑗𝑡ℎ value of 𝑥1 is denoted as 𝑥1(𝑗) for j 

= 1, 2, … , 20 (similarly for 𝑥2). I generated 500 instances for 𝐷0 and 𝐷1. 𝐷0 should have 

a pattern so I decide to generate a pattern in 80% of 𝐷0 as follow. I assign 20 instances to 

each of the 20 cells [𝑥1(𝑗), 𝑥2(𝑗)] for j = 1, 2,…, 20. I call such a pattern set 𝑆𝑝 where p is 

the number of features over which the pattern extends (two in this case). Cells associated 

1- Generate random data for each variables (D1)  

2- Combine the original data (D0) with generated data (D1) 

3- Define Class 0 for D0 and Class 1 for D1 

4- Apply RF model to the final data set 

5- Get prediction probability from the model 

6- Check the ROC curve if it is needed to change the probability threshold 

7- Get probability histograms for Class 0 and Class 1 to check the class 

probability distributions. 

 

 



 

31 

with pattern set 𝑆𝑝 are called pattern cells. Examples of pattern cells are [car(1), driver(1)], 

[car(2), driver(2)], and so on for 80% of 𝐷0. This pattern represents a realistic type of 

pattern. To test the robustness of the model to noises in the original data, I decide to 

generate random data for the remaining 20% instances. I assign Y=0 to the instances in 𝐷0. 

I randomly generated the attribute value over p = 2 features independently. 𝐷1 instances 

are generated randomly over p = 2 features (independently). I assign Y=1 to the instances 

in 𝐷1 . I combine these to data sets, so we have a unique data set with two classes. I apply 

RF model on to this data set. The OOB estimate of error is approximately 15%. Table 1 

shows the confusion matrix. 

TABLE 1 Confusion Matrix of Low Dimensional Dataset 

 Predicted Class 0 Predicted Class1 Class Error 

Actual Class 0 409 91 0.18 

Actual Class1 61 439 0.12 

 

I use OOB estimation for calculating the class probability for each instances. I 

generate the ROC curve and calculate the area under the curve, which is about 0.86 and it 

is an acceptable result. The cutoff point to have a zero false positive rate is 0.97 (figure 6).  

Figure 7 shows the histogram of class 0 probability for 80% of the instances in 𝐷0 

in the pattern set and figure 8 shows the histogram of class 0 probability for 𝐷1. These were 

class probability estimates obtained from OOB. Clearly, RF is able to distinguish between 

the D0 and D1 data. 

Note that we have a few observations in figure 7 with �̂�0(𝑥𝑖) = 1. Upon inspecting 

those 29 observations, they were found to be ones associated with the pattern cells.  
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Fig. 6. Roc Curve of Applying the Model on the Low Dimensional Dataset (The Area under the 

Curve = 0.86) 

 

 

Fig. 7. Histogram for Normal Class Probability Plot in 𝐷0 (The Model Recognizes the Patterned 

Records with High Accuracy) 
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Fig. 8. Histogram for Normal Class Probability Plot in 𝐷1 (The Model Recognizes the Random 

Generated Records with High Accuracy) 

To ensure accuracy of the results, I generate five different 𝐷1 data sets for the same 

𝐷0 and five different RF learner models for each data set. The class probability distributions 

were almost identical for each 𝐷0,𝐷1 combination. Consequently, I show the figures for a 

single combination only.  

Representative Application 

The second data set is high dimensional, and simulated with characteristics that 

resemble a border security application. It has 20 categorical features each having 20 distinct 

values, and consists of 5000 instances in each of 𝐷0 and 𝐷1. Although the total number of 

features is 20, I apply the pattern generating rule (as discussed in the previous subsection) 

on 80% of 𝐷0 over p = 4 features (so that we have a pattern set S4) and randomly generated 

attribute values for the remaining 16 features. However, for the remaining 20% of the 

instances in 𝐷0, I randomly generated attribute values for all 20 features (independently) 

to test the robustness of RF learner. All Instances for 𝐷1 were generated randomly over p 

= 20 features. The OOB estimation for this model is about 14%. Table 2 shows the 

confusion matrix of the model. 
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TABLE 2 Confusion Matrix of Model on Dataset with 20 Variables 

 Predicted Class 0 Predicted Class 1 Class Error 

Actual Class 0 3609 1391 0.28 

Actual Class 1 0 5000 0 

 

The area under ROC curve is 0.9 which shows our model accuracy (figure 9). 

Figure 10 shows the histogram of class 0 probability for 80% of the instances in 𝐷0 in the 

pattern set. Figure 11 shows the histogram of class 0 probability for 𝐷1. The two figures 

show how our model could well separate the pattern set from random data.  

 

Fig. 9. Roc Curve of Applying the Model on the Dataset with 20 Variables (The Area under the 

Curve = 0.9) 
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Fig. 10. Histogram for Normal Class Probability Plot in 𝐷0  (The Model Detects the Patterned 

Dataset) 

 

 

Fig. 11. Histogram for Normal Class Probability Plot in 𝐷1 (The Model Detects the Random 

Generated Data Records) 

Again, I generate five different 𝐷1 data sets for the same 𝐷0 and five different RF 

learner models for each data set. The class probability distributions were almost identical 

for each 𝐷0,𝐷1 combination.  



 

36 

I also do another experiment on higher dimensional data set with 90 variables and 

5000 records. I build a data set that has a pattern for 25 features for 80% of records (𝐷0). 

For 𝐷1  I randomly generated data for 90 features with 5000 records. Again, I apply RF on 

the mixed of 𝐷0  and 𝐷1. Table below shows the result of RF model. 

TABLE 3 Confusion Matrix of Model on Dataset with 90 Variables 

 Predicted Class 0 Predicted Class 1 Class Error 

Actual Class 0 5000 0 0 

Actual Class 1 0 5000 0 

 

  
Fig. 12. Roc Curve of Applying the Model on High Dimensional Dataset (The Area under the 

Curve = 1) 
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Fig. 13. Histogram for Normal Class Probability Plot in 𝐷0 (The Model Detects the Random 

Generated Data Records) 

 

 

Fig. 14. Histogram for Normal Class Probability Plot in 𝐷1 (The Model Detects the Random 

Generated Data Records) 

 

I generate five different 𝐷1 data sets for the same 𝐷0 and five different RF learner 

models for each data set. The class probability distributions were almost identical for each 

𝐷0,𝐷1 combination. The results are almost the same for each run. To demonstrate the 

similarity of the results as an example, I overlay the ROC curve for one of the 5 replications 

in figure 15. We can see that all of the ROC are the same. For the previous two experiments, 

the results are similar for each replications of each dataset. In Table 4 I provide the average 
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minimum, mean and maximum of the area under the curve for the 5 replications of the 

model on each dataset.  

 

Fig. 15. Roc Curve for 5 Replications of Model for High Dimensional Simulated Dataset 

 

TABLE 4 Average Statistics of Area under Roc Curve for 5 Replications of Model on Test Set 

for High Dimensional Dataset 

# of records of 

noises in the 

training set 

(D0) 

Min  Mean Max 

0 1.00 1.00 1.00 

500 1.00 1.00 1.00 

1000 1.00 1.00 1.00 
 

Feature Selection 

To have accurate results and powerful prediction models, our model should have 

the most relevant attributes. Using redundant attributes in the model could be misleading, 

and can bias the results. For example, k-nearest neighbor method uses small neighbors for 

prediction that could be significantly skewed because of redundant attributes that are in the 

model. Also, analyzing data with irrelevant attributes will cause overfitting problem. For 
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example, decision tree models are based on optimal splits on attributes. Decision tree 

algorithm first split those attributes that are the most important ones in predicting the 

response value. Irrelevant attributes are the last ones that are split. If we do not omit 

irrelevant attributes and put all attributes in the model, we will have an overfitting problem 

that decrease the prediction accuracy. 

Feature selection is a technique that could help us to find the best relevant attributes 

in a data set to have a more accurate model. There are three general classes of feature 

selection methods: 

Filter Methods 

Filter methods assign a score to each attributes of a data set. The features then will 

be ranked based on that scores. Those scores determine if a feature should be removed from 

the model or should be stayed. Chi squared test, correlation coefficient scores and 

information gain are examples of filter methods. 

Wrapper Methods 

Wrapper methods use a subset of features to build a model. Then the accuracy of 

each of the models are compared to each other. The subset of features that build the most 

accurate model is considered the best model. Recursive feature elimination is an example 

of wrapper method. 

Embedded Methods 

Embedded methods determine the features that have the most effective contribution 

in model accuracy. Example of embedded methods is LASSO, Ridge Regression. 
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Embedded methods use a penalty in a model (e.g. regression) to decrease the bias towards 

low complexity.  

RandomForest is an efficient feature selection technique, which is efficient in 

categorical data sets. I used RF to select the most relevant attributes and do the same 

analysis with only those attributes.  

The OOB estimation for this model is 10% which has been decreased from the 

previous model. 

TABLE 5 Confusion Matrix of Model on Dataset with 20 Variables after Applying Feature 

Selection 

 Predicted Class 0 Predicted Class 1 Class Error 

Actual Class 0 4008 992 0.2 

Actual Class1 35 4965 0.007 

 

Figures 16 and 17 show the class 0 probability estimates of 𝐷0 and 𝐷1 data, 

respectively, after employing feature selection techniques. These figures show an improved 

separation between the two classes from that obtained from figures 10 and 11.  
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Fig. 16. Histogram for Normal Class Probability Plot in 𝐷0 (The Accuracy of Model Improved 

after Applying Feature Selection on the Data Set with 20 Variables) 

 

 

 

Fig. 17. Histogram for Normal Class Probability Plot in 𝐷1 (The Accuracy of Model Improved 

after Applying Feature Selection on the Data Set with 20 Variables) 

 

Finally, I conduct another experiment for a null case when both the 𝐷0 and 𝐷1 data 

are randomly generated over 20 features (N0 = N1 = 5000). Since there is no pattern in the 
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normal data, intuitively the classifier should not be able to learn any relationship among 

the attribute sets. 

Thus, we should not be able to distinguish between the 𝐷0 and 𝐷1 data. Figures 18 

and 19 show the class 0 probability estimates for the 𝐷0 and 𝐷1 data, respectively, for this 

null case. They turn out to be almost identically distributed which verifies our intuition. 

 

Fig. 18. Histogram for Normal Class Probability Plot in 𝐷0 (All Data Are Randomly Generated) 

 

Fig. 19. Histogram for Normal Class Probability Plot in 𝐷1 (All Data Are Randomly Generated)  
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4.4 Method Comparison 

To evaluate the performance of the algorithm, I apply the model to a real life data 

set and compared the result with some other methods that have been developed for 

detecting outliers in categorical data sets. The methods that I use in the comparison are 

FindFPOF algorithm [25], FindCBLOF algorithm [22].  

For all of the experiments, the two parameters needed by the FindCBLOF algorithm 

were set to 90% and 5 separately as done in Hawkins et al.  [33]. For our algorithm, the 

parameter minisupport for mining frequent patterns was fixed to 10%, and the maximal 

number of items in an itemset was set to 5. The number of rare cases identified was used 

as the assessment basis for comparing our algorithm with other algorithms. 

4.4.1 Data 

The dataset that I use in this section is Wisconsin breast cancer data set, which has 

9 categorical attributes with 699 records. The data set has two classes: benign (458 or 

65.5%) or malignant (241 or 34.5%). Based on Hawkins et al.’s [33] experimental method 

I removed some of the malignant class to form a very unbalanced data set.  

I create a training dataset with 222 records of benign class and 20 records of 

malignant class and set them as class 0 (𝐷0), I also generate random data for each attribute 

(𝐷1). I ran a RF model to the mixed of 𝐷0 and 𝐷1. I use a test set with 222 rows of benign 

records and 19 records of malignant records for prediction. I rank all the prediction records 

based on outlier factor (for our model I rank the records based on the probability of being 

outliers) and then I calculate the coverage for top n% of rows. 

In Table 6 below we can see that our proposed model can detect outliers in lower 

percentage of records, so our model outperforms. 
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TABLE 6 Comparison of Methods 

Top Ratio of       

Records 

Number of Rare Classes Included (Coverage) 

Proposed 

model FindFPOF FindCBLOF 

0% 0 0 0 

1% 10.53% 7.69% 10.26% 

2% 21.95% 17.95% 17.95% 

4% 47.37% 35.90% 35.90% 

6% 68.42% 53.85% 53.85% 

8% 78% 71.79% 69.23% 

10% 84% 79.49% 82.05% 

12% 100% 89.74% 89.74% 

14% 100% 100% 97.44% 

16% 100% 100% 100% 

18% 100% 100% 100% 

20% 100% 100% 100% 

25% 100% 100% 100% 

28% 100% 100% 100% 

 

To show the accuracy of our model for different instances of malignant and benign 

records, we built four different training datasets with 222 benign and 0, 10, 20 and 40 

malignant observations. The test set has 222 benign and 19 malignant observations. We 

ran RandomForest (RF) model on the training sets set 5 times for each dataset (20 models 

in total) and then applied the model on the test to make sure that the results are accurate. 

We considered the malignant records as positive class (anomalies) and benign instances as 

negative class (normal). The results were almost the same for all runs, we generated the 

ROC curves for each run on the test set and  overlaid the 5 ROC curves of the model on 

the first dataset (dataset has 0 malignant records) in figure 20 to demonstrate their similarity 

as an example. For all of the other models the ROC curves were approximately the same 

for the 5 replications of each dataset. I provided the average minimum, mean and maximum 
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of the area under the curve for the five runs of the model on each data set. From the ROC 

curves that are provided below we can see that the accuracy of the models is slightly 

decreasing when we increased the number of malignant observations in the training sets. It 

shows that when we have more anomalies on the training dataset, the power of the model 

to detect the anomalies is decreasing. Although, the area under the curve is quite high even 

for 40 malignant rows.  

 
Fig. 20. Roc Curve of Test Set with 0 Malignant Records in the Training Set (Area under the 

Curve = 0.99) 

 

Fig. 21. Roc Curve of Test Set for 5 Replications of Model with 0 Malignant Records in the 

Training Set (All of the Curves Are Almost Identical) 
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Fig. 22. Roc Curve of Test Set with 10 Malignant Records in the Training Set (Area under the 

Curve = 0.98) 

 
Fig. 23. Roc Curve of Test Set with 20 Malignant Records in the Training Set (Area under the 

Curve = 0.97) 

 
Fig. 24. Roc Curve of Test Set with 40 Malignant Records in the Training Set (Area under the 

Curve = 0.95) 
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TABLE 7 Average Statistics of Area under Roc Curve for 5 Replications of Model on Test Set 

with Different Malignant Records in Training Set 

# of benign 

records in 

training set 

# of 

malignant 

records in 

training set 

Min Mean Max 

222 0 0.9927 0.9929 0.993 

222 10 0.9854 0.9856 0.9862 

222 20 0.9736 0.974 0.9745 

222 40 0.9549 0.956 0.9567 

 

I also show that when we decrease the number of benign observations and increase 

malignant observations in the training set, the accuracy of model will decrease. I run 

models on two training datasets with 100 and 50 benign and 241 malignant observations. I 

repeat the model 5 times to make sure that the accuracy of the models is high. I provide 

ROC curve and the area under the curve of the models. I also include minimum, mean and 

maximum of the area under the curve for the five runs of the model on each data set. From 

the ROC curves that are provided below, we can see that when the malignant observations 

are more than the benign observations the accuracy of the model has decreased. In table 8 

I also show the average minimum, mean and maximum of the area under the curve for 5 

replications of model on datasets with different benign records. 
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Fig. 25. Roc Curve of Test Set with 100 Benign Records in the Training Set (Area under the 

Curve = 0.90) 

 
Fig. 26. Roc Curve of Test Set with 50 Benign Records in the Training Set (Area under the Curve 

= 0.87) 

 

TABLE 8 Average Statistics of Area under Roc Curve for 5 Replications of Model on Test Set 

with Different Benign Records in Training Set 

# of benign 

records in 

training set 

# of malignant 

records in 

training set 

Min Mean Max 

100 241 0.90 0.90 0.90 

50 241 0.87 0.87 0.88 
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TABLE 9 Packages and Codes 

Method R package R code 

RandomForest randomForest randomForest(y ~ x, data, ntree,…) 

Prediction randomForest predict(RF model, newdata) 

ROC curve ROCR prediction(OOB.pred,test$Class) 

performance(pred.obj, "tpr","fpr") 

Area Under Curve (AUC) ROCR auc(actual class, predicted class) 
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5 CONCLUSION 

I develop a novel method for detecting anomalies in categorical datasets. The model 

is based on Random Forest and artificial contrasts and transforms the usual unsupervised 

problem of point anomaly detection into a supervised one. Using Random Forest, the 

method was able to learn the attribute relationships in high dimensional categorical data, 

and predict the class probability with high accuracy. Moreover, the proposed method 

incorporates feature selection in case of high-dimensional data to identify the features 

involved in the pattern, and thus convert the problem into a low-dimensional one. I 

demonstrate performance of the method in two simulated data sets as well as the superiority 

of the model to other models in the literature when applied to real worlds datasets. The 

artificial contrast method is able to learn the relationship found in normal instances, and 

thus, to distinguish between normal and anomalous instances. Although I use a Random 

Forest classifier, other classifiers can easily be used. It will also be useful to identify groups 

of anomalous instances, sometimes known as collective anomalies to understand the 

mechanism behind their origin.   
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