
 

 

Improving the Reliability of 

NAND Flash, Phase-change RAM and Spin-torque Transfer RAM 

by 

Chengen Yang 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

 

Approved April 2014 by the 

 Graduate Supervisory Committee: 

 

Chaitali Chakrabarti, Chair 

Umit Ogras 

Bertan Bakkaloglu 

Yu Cao 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

 

May 2014 



 

  i 

                                                ABSTRACT   

Non-volatile memories (NVM) are widely used in modern electronic devices due 

to their non-volatility, low static power consumption and high storage density. While 

Flash memories are the dominant NVM technology, resistive memories such as phase 

change access memory (PRAM) and spin torque transfer random access memory (STT-

MRAM) are gaining ground. All these technologies suffer from reliability degradation 

due to process variations, structural limits and material property shift.  

To address the reliability concerns of these NVM technologies, multi-level low 

cost solutions are proposed for each of them. My approach consists of first building a 

comprehensive error model. Next the error characteristics are exploited to develop low 

cost multi-level strategies to compensate for the errors. For instance, for NAND Flash 

memory, I first characterize errors due to threshold voltage variations as a function of the 

number of program/erase cycles. Next a flexible product code is designed to migrate to a 

stronger ECC scheme as program/erase cycles increases. An adaptive data refresh scheme 

is also proposed to improve memory reliability with low energy cost for applications with 

different data update frequencies. 

 For PRAM, soft errors and hard errors models are built based on shifts in the 

resistance distributions. Next I developed a multi-level error control approach involving 

bit interleaving and subblock flipping at the architecture level, threshold resistance tuning 

at the circuit level and programming current profile tuning at the device level. This 

approach helped reduce the error rate significantly so that it was now sufficient to use a 

low cost ECC scheme to satisfy the memory reliability constraint. I also studied the 



 

  ii  

reliability of a PRAM+DRAM hybrid memory system and analyzed the tradeoffs 

between memory performance, programming energy and lifetime.  

For STT-MRAM, I first developed an error model based on process variations. I 

developed a multi-level approach to reduce the error rates that consisted of increasing the 

W/L ratio of the access transistor, increasing the voltage difference across the memory 

cell and adjusting the current profile during write operation. This approach enabled use of 

a low cost BCH based ECC scheme to achieve very low block failure rates.  

 



 

  iii  

DEDICATION  

   

 To my beloved parents and grandmother.



 

  iv 

ACKNOWLEDGMENTS  

I would like to express my special appreciation and thanks to my advisor 

Professor Dr. Chakrabarti, my committee chair for her countless hours of reflecting, 

reading, encouraging, and most of all, patience throughout the entire Ph.D program. The 

day I met Dr. Chakrabarti, August 21
st
 2009, was my 25

th
 birthday. The opportunity and 

future she offered me would be the most cherished gift I can ever have. I also would like 

to thank my committee members, Dr. Cao, Dr. Ogras, Dr. Bakkaloglu, who were more 

than generous with their expertise and precious time. Moreover, I wish to thank NSF 

funding that supported my research. 

I would like to acknowledge and thank department staffs, especially Miss Esther 

Korner, for their continued support.  

My sincere thank also goes to my friends and colleagues in the lab, Zihan, Siyuan, 

Ming and Yunus. Their help and encouragement supported me through those rough days.  

           Last but not the least, I would like to thank my family. Words cannot express how 

grateful I am to my mother, father and grandparents for all of the sacrifices that youôve 

made on my behalf. Your prayer for me was what sustained me thus far. At the end I 

would like express appreciation to my girlfriend, Manqing, who spent sleepless nights 

helping me edit papers. You ignited my life in the last 9 months and was always there 

cheering me up and stood by me. 

 



 

  v 

TABLE OF CONTENTS 

                                              Page 

     LIST OF TABLES .............................................................................................................. ix  

     LIST OF FIGURES ............................................................................................................ xi  

     CHAPTER 

1     INTRODUCTION .................  ....................................................................................  1  

1.1 NAND Flash Memory ......................................................................... 3  

1.2 Phase Change Random Access Memory ............................................ 7  

1.3 Spin-torque Transfer Random Access Memory ................................. 9 

1.4 Thesis Organization ........................................................................... 11 

2     NAND FLASH MEMORY ............  ........................................................................  13  

2.1 Introduction ........................................................................................ 13  

2.2 NAND Flash Memory Organization and Operation ......................... 14 

2.3 Errors in NAND Flash Memories ..................................................... 18  

         2.3.1 Error Models .......................................................................... 19  

         2.3.2 Performance Metrics .............................................................. 22  

2.4 Related Work ..................................................................................... 22  

2.5 Product Scheme for MLC NAND Flash Memory ............................ 24  

         2.5.1 Product Code Scheme: Basics ............................................... 24  

         2.5.2 Product Code Scheme: Encoding and Decoding .................. 27  

         2.5.3 Error Location Distribution ................................................... 30  

         2.5.4 Flexible Schemes ................................................................... 31 



 

  vi 

CHAPTER                                                                                                          Page 

2.6 Simulation Results ............................................................................. 32  

         2.6.1 Candidate Product Codes ....................................................... 33  

         2.6.2 Performance Comparison ...................................................... 34 

2.7 Hardware Implementation and Tradeoffs ......................................... 38  

         2.7.1 RS decoder Structure ............................................................. 38  

         2.7.2 Hamming code Hardware Structure ...................................... 45  

         2.7.3 Trade-offs Between Schemes ................................................ 47  

2.8 Adaptive Refresh Technique ............................................................. 49  

         2.8.1 PI and Retention Error Characteristics .................................. 50  

         2.8.2 Candidate ECC Schemes ....................................................... 52  

         2.8.3 Evaluation of Adaptive Refresh Techniques ........................ 58  

2.9 Conclusion .......................................................................................... 64  

3     PHASE-CHANGE RAM MEMORY ......................................................................  67  

3.1 Introduction ........................................................................................ 67  

3.2 Background ........................................................................................ 68  

         3.2.1 PRAM Bascis ......................................................................... 68  

         3.2.2 Device Model ......................................................................... 71  

         3.2.3 MLC PRAM........................................................................... 73  

3.3 MLC PRAM error model .................................................................. 75  

         3.3.1 Resistance Distribution .......................................................... 75  

         3.3.2 Soft and Hard Error Analysis ................................................ 79  



 

  vii  

CHAPTER                                                                                                          Page 

3.4 Related Work ..................................................................................... 86  

3.5 Architecture-level Error Control ....................................................... 88  

         3.5.1 Gray Coding and 2-bit Interleaving....................................... 88  

        3.5.2 Subblock Flipping ................................................................... 89  

3.6 Circuit-level Error Control................................................................. 92  

        3.6.1 Soft Error Rate Tuning ........................................................... 92  

        3.6.2 Hard Error Rate Tuning .......................................................... 93  

        3.6.3 Total Error Rate Tuning.......................................................... 94 

3.7 Device-level Error Control ................................................................ 96   

3.8 Multi -level Error Control Approach ................................................ 102  

        3.8.1 Simulation Setup ................................................................... 102  

        3.8.2 Multi -level Approach 1 ......................................................... 109  

        3.8.3 Multi -level Approach 2 ......................................................... 121  

3.9 Conclusion ........................................................................................ 128 

4     SPIN-TORQUE-TRANSFER RAM MEMORY  ..................................................  131  

4.1 Introduction ...................................................................................... 131 

4.2 Background ...................................................................................... 132  

         4.2.1 Memory Cell Structure ........................................................ 132  

         4.2.2 STT-RAM Operation ........................................................... 133  

4.3 Errors in STT-RAM ......................................................................... 134  

         4.3.1 Error Classification .............................................................. 134  



 

  viii  

CHAPTER                                                                                                          Page 

         4.3.2 Errors in READ and WRITE Operations ............................ 136  

4.4 Related Work ................................................................................... 139  

4.5 Circuit Level Techniques for Reducing Error ................................. 141  

         4.5.1 Effect of W/L of Access Transistor ..................................... 141  

         4.5.2 Effect of Voltage Boosting (VB) ......................................... 143  

         4.5.3 Effect of Combination of VB and WRITE Pulse Tuning ... 144  

                        4.6 System Level Analysis ..................................................................... 146  

         4.6.1 ECC Performance Evaluation.............................................. 146  

         4.6.2 Hardware Overhead ............................................................. 152 

4.7 Conclusion ........................................................................................ 152  

5     CONCLUSION ...................  ..................................................................................  154  

5.1 NAND Flash Memory ..................................................................... 154  

5.2 Phase Change Random Access Memory ........................................ 155 

5.3 Spin-torque Transfer Random Access Memory ............................. 156 

5.4 Future Work ..................................................................................... 156 

References.......  ....................................................................................................................  158 



 

  ix 

LIST OF TABLES 

    Table Page 

2.1     Candidate ECC schemes for 8KB and 16KB page Flash memories.  .................  34 

2.2     Performance comparison between regular and flexible schemes.. ......................  38 

2.3     Comparison of regular and flexible schemes .......................................................  39 

2.4     Implementation of proposed scheme for different RS codes. ..............................  42 

2.5     Delay of RS decoders of different codes . ............................................................  44 

2.6     Synthesis results of RS (63, 59) decoder. . ...........................................................  44 

2.7     Comparison of estimated gate counts of RS decoders. ........................................  45 

2.8     Synthesis results of Hamming encoder/decoder...................................................  47 

2.9     Area, Latency, BER and Redundancy rate of ECC Schemes.  . ..........................  48 

2.10   Related work comparison. .....................................................................................  50 

2.11   Error probabilities of DR errors and PI errors. .....................................................  52 

2.12   Sub-page error rate before and after Gray coding. ...............................................  53 

2.13   Sub-page error rate for different DR times and different PI ratios. .....................  54 

2.14   ECC schemes to achieve UBER=10
-15

 for different refresh intervals. . ............... 58 

2.15   Decoding latency and redundancy rate of ECC schemes.  ................................... 60  

2.16   Latency and energy of 4KB page NAND Flash in 45nm Technology. ...............  60 

2.17   Additional energy distribution of refresh technique. ............................................  62 

3.1    Material properties in PRAM device model. .......................................................... 73 

3.2    Single cell latency and energy of interstate transitions. ........................................  75 

3.3     Parameter values used in Hspice simulation. .......................................................  77 



 

  x 

    Table Page 

3.4     Parameters of s-logistic fitting functions. .............................................................  79 

3.5     Parameters of resistance drift model. ....................................................................  81 

3.6     Visible hard error reduction due to subblock flipping. ........................................  91 

3.7     Hardware overhead of ECC decoding schemes . ...............................................  105 

3.8     CACTI simulation configuration for MLC PRAM. ...........................................  106 

3.9    CACTI results of programming state ó00ô and ó11ô . ..........................................  107 

3.10   CACTI results of programming state ó01ô and ó10ô. ..........................................  107 

3.11   CACTI WRITE latency and energy of interstate transitions of Strategy 5. ......  107 

3.12   System evaluation configuration. ........................................................................  109 

3.13   ECC schemes required to meet BFR=10
-8
 and corresponding lifetime. ............. 111 

3.14   Features of  candidate strategies.. ........................................................................ 114 

3.15   ECC, Rth(01,00) and storage overhead of all strategies for NPC=10
6.4

.. ................ 117 

3.16   Hardware overhead of ECC decoding schemes. ................................................. 119 

3.17  Worst case latency of 9 strategies at 10
6
 cycles. .................................................  127 

4.1     Device parameters of STT-RAM . ......................................................................  136 

4.2     Bit error rates of a single STT-RAM cell. ..........................................................  148 

4.3     ECC scheme for STT-RAM to achieve the target BFR . ...................................  148 

4.4     Extra storage rates of different ECC schemes for three block sizes. .................  151 

4.5     Synthesis results of all candidate BCH codes. . .................................................  152 

4.6     Hardware overhead of ECC scheme for STT-RAM. .........................................  152 

 



 

  xi 

LIST OF FIGURES 

       Figure                                                                                                                  Page 

1.1    The diversity in memory operation and performance ......................................  3 

2.1     NAND Flash memory architecture  ..............................................................  15 

2.2     Conceptual representation of threshold voltage distributions for (a) SLC and 

(b) 3-bit MLC in Flash memory cells .......................................................  16 

2.3     Circuit layout of a NAND Flash memory block ...........................................  17 

2.4     Raw BER and MBU probability vs. P/E cycles ............................................  20 

2.5     MBU probablity as a function of MBU size .................................................  21 

2.6     Product code scheme .....................................................................................  25 

2.7    Performance comparison between BCH-Hamming and RS-Hamming in (a)  

random and (b) hybrid error models  ........................................................  27 

2.8      Product code encoding flow and physical mapping of information and 

parity  bits.  ................................................................................................  28 

2.9     Decoding of product code in Flash memory .................................................  30 

2.10   Mutilpe uncorrectable errors scenatio   .........................................................  31 

2.11   Target BER is achieved by using flexible ECC. ...........................................  32 

2.12   Proposed flexible ECC scheme .....................................................................  32 

2.13   Performance comparison between product schemes ....................................  35 

2.14   Performance comparison between product schemes ....................................  36 

2.15   Performance comparison between regular product schemes and flexible 

schemes in hybrid error model. ................................................................  37 



 

  xii  

Figure                                                                                                                  Page 

2.16    Reed-Solomon decoder using pipelined degree-computationless modified  

Euclidean (PDCME) algorithm. .............................................................    40 

2.17   Pipelined time chart of RS decoder ...............................................................  40 

2.18   Proposed architecture for Key-equation block .............................................  42 

2.19   Parity generation for (39, 32) from (72, 64)................................................... 46 

2.20   Block diagram of encoder for (72, 64) and (39, 32) codes. ..........................  47 

2.21   BCH codes with different error correction capabilities for 512 bits ............  55 

2.22   Flowchart of adaptive refresh technique. ......................................................  58 

2.23   Effect of different refresh intervals for Application A. ................................  62 

2.24   Normalized energy-ECC decoding latency product of Application A ......... 64 

2.25   Normalized energy-ECC decoding latency product of Application B .........  65 

3.1     PRAM cell structure ......................................................................................  70 

3.2     PRAM cell READ and WRITE current profile  ............................................ 71 

3.3     Phase change in the programming region .....................................................  72 

3.4     The equivalent circuit model for SPICE simulation .....................................  73 

3.5     Finite state machine  and multiple programming steps of MLC PRAM  ....  75 

3.6     Resistance distribution of 4 states in 2bit MLC PRAM. ..............................  77 

3.7     Resistance distribution of  state ó00ô and state ó01ô in 10 step strategy .......  79 

3.8     Resistance drift comparison between proposed MLC PRAM model and 

measured data ............................................................................................  81 

3.9     Soft error mechanism of MLC PRAM ..........................................................  82 



 

  xiii  

       Figure                                                                                                                 Page 

3.10   Resistance drop of ó00ô state with number of programming cycles .............  84 

3.11   Hard error mechanism of MLC PRAM. .......................................................  85 

3.12   Error distribution after Gray coding of 4 states  ...........................................  87 

3.13   Encoding flow of 2-bit interleaving technique  ............................................  88 

3.14   Es (ó10ô-> ó01ô) and Es (ó01ô-> ó00ô) increase with data storage time. ........ 92 

3.15    Hard error rate as a function of Rth(01,00) and NPC. Hard error rate drops 

due to subblock flipping (SF). ..................................................................  92 

3.16   Soft and hard error rate of 2bit MLC PRAM as a function of Rth(01,00) . ......  94 

3.17   Total error rate of 2bit MLC PRAM as a function of Rth(01,00). ....................  95 

3.18   Optimal threshold resistance as a function of NPC for different DST.........  95 

3.19   Current profile tuning for programming  ó11ô->ô00ô. ...................................  97 

3.20   Current profile tuning for programming  ó11ô ..............................................  98 

3.21   Current profile tuning for programming  ó01ô and ó10ô ................................  98 

3.22   Soft errors and hard errors as a function of NPC ........................................  100 

3.23   Bit error rate of nine programming strategies for different NPC ...............  101 

3.24   Block failure rate of the different ECC schemes for a 256 bit block. .................  102 

3.25   Multi -level approach for reducing errors in MLC PRAM. ........................  103 

3.26   Minimum error rate changes as a function of NPC after Rth(01,00) tuning, ..  110 

3.27   Minimum soft error tuning for different data storage time (DST). ............  111 

3.28   Hard BER after using Rth(01,00) tuning and ECC ..........................................  112 

3.29   Error rate of four error correction strategies vs. NPC for DST=10
5
s. ........  115 



 

  xiv 

Figure                                                                                                                  Page 

3.30  Error rate of four error correction strategies vs. NPC for DST=10
5
s. .........  116 

3.31  Storage overhead for the candidate strategies ..............................................  119 

3.32   Normalized energy of PRAM based hybrid memory. ................................  122 

3.33   Normalized latency of PRAM based hybrid memory ................................  122 

3.34   For a fixed ECC code, different programming strategies result in different 

memory lifetimes (in terms of NPC). .....................................................  124 

3.35    Tradeoff between programming energy of one 512 bit block and 

memory lifetime of all nine strategies ....................................................  124 

3.36   For a given lifetime, different programming strategies require different ECC 

codes ........................................................................................................  126 

3.37   Tradeoff between programming energy (normalized) and system 

IPC (normalized) .....................................................................................  127 

4.1     STT-RAM structure .....................................................................................  134 

4.2     Failures occur when the distributions of READ current overlap ...............  138 

4.3     Distribution of WRITE time during WRITE-0. ..........................................  139 

4.4     Effects of different variations on STT-MRAM ..........................................  140 

4.5     Distribution of READ current for different access transistor sizes ............  143 

4.6     BER vs. WRITE pulse duration for different W/L ratios ...........................  143 

4.7     Probability distribution of WRITE-0 and WRITE-1 for different 

values of SL voltage ................................................................................  145 

4.8     BER vs WRITE pulse duration for different values of SL voltage ............  146 



 

  xv 

Figure                                                                                                                  Page 

4.9     Power and Energy Consumption for different values of boosted 

voltage and WRITE pulse width ............................................................  147 

4.10   Block failure rate vs ECC correction capability .........................................  149 

4.11   One candidate product error correction scheme for 2048 bit block ...........  150 

4.12   Performance comparison between long BCH code and flexible ECC .......  151 

 



 

  1 

CHAPTER 1 

INTRODUCTION 

Memory can be broadly classified into two types: volatile and nonvolatile. 

Volatile memory loses data as soon as the power supply is turned off. Examples include 

static random access memory (SRAM) and dynamic random access memory (DRAM). 

Such memories typically have very low latency and are used as the primary storage. 

Nonvolatile memory, on the other hand, does not lose its data when the device is turned 

off.  Examples include Flash memory, electrically erasable programmable READ-only 

memory (EEPROM) and emerging resistive nonvolatile memories, such as phase change 

RAM (PRAM), magnetic RAM (MRAM) and resistive RAM (RRAM). All modern 

electronic devices, such as mobile phones, notebook computers, digital cameras, MP3 

music players, portable medical diagnostic systems, and global positioning systems, have 

storage systems based on nonvolatile memories. Since these memories have large access 

time, they are typically used in high levels of memory hierarchy. However, recently, new 

types of nonvolatile memories, such as spin toque transfer RAM (STT-RAM) and RRAM 

have been shown to have timing performance that is comparable to traditional volatile 

memory and thus have the potential to be used at low levels of memory hierarchy.  

 The different types of nonvolatile memory have very different data storage 

mechanisms. Flash memory device uses an electrically isolated floating gate to store 

trapped electrons; the number of trapped electrons determines the threshold voltage of the 

memory cell, which in turn represents the logical state of the data that is stored in the cell. 

A PRAM cell is built with phase change material whose resistivity reflects the value of 



 

  2 

the data; low resistance corresponds to logical state ó1ô and high resistance corresponds to 

state ó0ô. Another type of resistive nonvolatile memory, STT-MRAM uses the mutual 

magnetic orientation between two thin tunneling dielectric films to represent the logical 

value. If the two films have the same magnetic orientation, magnetic tunneling junction 

(MTJ) shows low resistivity corresponding to logical state ó1ô; if the two films have 

opposite magnetic orientation,   MTJ shows high resistivity and corresponding to logical 

state ó0ô. 

 Figure 1.1 compares the device operation and performance of different types of 

memories. We can see that compared to SRAM and DRAM, non-volatile memories have 

much lower static power consumption, especially PRAM and MRAM. However, some of 

them, such as NAND Flash and PRAM have higher programming energy. In general, 

nonvolatile memories have higher cell density, but they also have higher latency. Since 

higher memory layers require larger storage sizes and have low access frequency, use of 

nonvolatile memories in main memory or hard disk is cost effective. They result in low 

area per bit and have low energy cost with good system performance. 

One major drawback of nonvolatile memories is that they suffer from reliability 

degradation due to process variations, structural limits and material property shift. For 

instance, trapped electrons in floating gate of Flash memory leak over time and cause 

shift in the threshold voltage distribution resulting in data retention errors. Repeated use 

of high currents during RESET programming of PRAM results in Sb enrichment at the 

contact reducing the capability of heating the phase change material to full amorphous 

phase and results in hard errors. Process variations in the MOSFET current driver in 



 

  3 

STT-MRAM impact the programming current and lead to unsuccessful switch. In order 

that non-volatile memories be adopted as main stream memory technology, it is 

important that the reliability of these devices be significantly enhanced. In this thesis, we 

propose techniques for improving the reliability of three NVM technologies, namely, 

NAND Flash memory, PRAM and STT-MRAM.  We summarize our approach for each 

case in the rest of this chapter.  

                                        

NAND FLASH

NOR FLASH

PRAM

DWN
FeRAM

DRAM

STT-MRAM

SRAM

Low

High

Low

High

WRITE Energy

Idle Power

1ms

100us

10us

1us

100ns

10ns

1 10 100 1000

1ns

R
e

a
d

 +
W

ri
te

 L
a

te
n

c
y

Cell Size (F2 )

 

Figure 1.1. The diversity in memory operation and performance [1]. 

 



 

  4 

1.1. NAND Flash Memory 

Flash memory has become the dominant technology for non-volatile memories [2]. 

It is used in memory cards, USB Flash drives, and solid-state drives in a wide variety of 

application platforms spanning personal digital assistants, laptop computers, digital audio 

players, digital cameras and mobile phones.  

  There are two main types of Flash memory namely, NAND Flash memory and 

NOR Flash memory. The two types of memories differ in speed, area and programming 

method. In NOR Flash memory, each gate is independently programmed which improves 

the speed but has additional area overhead. On the other hand, NAND Flash memory has 

lower area since the source and drain of each consecutive cell are combined, but it has a 

higher READ latency compared to the NOR Flash structure [3]. Nevertheless, the NAND 

Flash structure is more attractive for solid state hard drives (SSD) which require huge 

storage and can tolerate higher latency. In this work we focus on the NAND Flash 

memory for SSDs. Specifically, we focus on multi-level cell (MLC) Flash memories 

which store 2 or more bits per cell by supporting 4 or more voltage states. These have 

even greater storage density and are the dominant Flash memory technology. 

  There are some inherent limitations of NAND Flash memories. These include 

WRITE/READ disturbs, data retention errors, bad block accumulation, limitation in the 

number of WRITEs [4][5][6] and stress-induced leakage current [7]. In recent years, due 

to cell size scaling, these issues have become critical [8]. In particular, reliability of MLC 

memory significantly degrades due to reduced gap between adjacent threshold levels.  



 

  5 

Furthermore the number of errors increase with increase in the number of program/erase 

(P/E) cycles.  

  To enhance the reliability of NAND Flash memories and support longer 

lifetimes, combinations of hardware and software techniques are used. These include 

wear leveling [8], bad block management and garbage collection [9]. To further enhance 

reliability, error correction code (ECC) techniques, which can detect and correct errors by 

storing and processing extra parity bits are used [10]. Existing ECC schemes include 

Hamming, Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes [11]-

17]. While higher error correction capability can be achieved by using stronger BCH or 

RS codes, they are expensive both in terms of area and latency. In this work, we proposed 

use of product codes [18][19] which use smaller constituent codes along rows and 

columns and achieve high error correction capability due to cross parity checking.  We 

also proposed hybrid schemes that reduce the error rate in subpages by using Gray code 

based encoding so that a low cost ECC scheme can be used to achieve the same level of 

error correction capability. 

 Approach: Our first step was to analyze the source of errors in MLC NAND 

Flash memory and build a quantitative error model. We estimated the threshold voltage 

shift due to increasing number of P/E cycles and calculated the error rates of single bit 

errors and multiple bit errors. For a 45nm technology device, when the number of P/E 

cycles is around 40K, we found that while random single bit errors were most common, 

2-bit errors occurred  ~10% of the time.   



 

  6 

  In order to handle these errors, we proposed use of BCH+Hamming and 

RS+Hamming product codes where BCH/RS is done along the rows followed by 

Hamming along columns. Such codes have lower area and smaller latency than single 

BCH and RS codes with comparable error correction capability/ Simulation results 

showed that for the same codeword length and error correction capability, RS+Hamming 

had equal performance compared with BCH+Hamming when the errors are random, and 

slightly better performance when the errors are a combination of single bit errors (90%) 

and 2bit burst errors(~ 10%); We also found that while RS+Hamming product code has 

slightly higher redundancy rate (~1%),  it is more attractive in terms of hardware 

complexity for similar code rate and codeword length.  

The proposed RS+Hamming product code scheme had an additional advantage. It 

could be used to derive a flexible ECC scheme where the error correction capability 

increases to compensate for the larger number of errors caused by the increase in number 

of P/E cycles. The proposed flexible schemes used two shorter Hamming codes, instead 

of one Hamming code, to enhance the error correction capability along the columns. For 

8KB Flash when the raw BER increased from 2.2*ρπ to 4.0*ρπ, to achieve a BER 

of ρπ , we proposed using RS(127,121) with two Hamming (39, 32) instead of 

RS(127,121) with Hamming(72,64) at the expense of 12% longer latency and 8% 

additional parity storage. This work appeared in [20],[21]. 

Recent work in [22]-[24] showed that errors in MLC NAND Flash can be 

classified into retention errors and programming interference (PI) errors.  Retention errors 

are caused by leakage of the electrons trapped in the floating gate causing the threshold 



 

  7 

voltage to reduce. PI errors result from parasitic capacitance coupling with neighboring 

cells and cause the threshold voltage to increase. Both types of errors increase with the 

number of P/E cycles [22]-[24]. Also, the two types of errors have different distributions 

in different subpages. It was shown that retention errors are typically much larger than PI 

errors when data storage time is greater than 1 day [22]. This feature was exploited in the 

design of a data refresh technique [25] that corrected retention errors at the expense of 

additional energy consumption.  

Our approach also utilized data refresh policies to reduce retention error. In 

addition, we proposed the use of Gray code based encoding to reduce the error rates in 

the four subpages (MSB-even, LSB-even, MSB-odd, LSB-odd). We chose a refresh 

interval which was a function of the program/erase (P/E) frequency of the application. 

We showed how the refresh interval affected the choice of the ECC scheme for a given 

reliability constraint. Overall the hybrid approach involving Gray code based encoding 

and data refresh policies enabled use of low cost ECC schemes and helped minimize 

memory energy and/or ECC decoding latency.  

1.2. Phase Change Random Access Memory 

Phase-change random access memory (PRAM) is a non-volatile memory 

technology that has many attractive features, including fast READ access time, high 

density, superior scalability, and very low standby leakage [26]. Unlike conventional 

SRAM and DRAM technologies that use electrical charge to store information, in PRAM, 

the state information, set or reset, corresponds to the resistance of a chalcogenide material, 

normally Ge2Sb2Te5(GST). This material can switch between the crystalline phase 



 

  8 

corresponding to the set or `1ô state and the amorphous phase corresponding to the reset 

or `0ô state.  

Recently, multiple level cell (MLC) PRAM has been introduced to improve the 

memory density even further [26]. A 2-bit MLC cell can store 2 information bits in 4 

logical states. For resistive memory such as PRAM, these 4 states correspond to 4 

different resistance values in the memory cell. Unfortunately, MLC PRAM memories are 

more error-prone compared to SLC PRAM because consecutive resistance levels are now 

closer. Furthermore, in an MLC PRAM, the resistance of an intermediate state drifts to 

that of a state with higher resistance causing soft errors [27]; these errors increase with 

data retention time (DRT). Again the resistance of the amorphous state decreases with the 

number of programming cycles (NPC) and causes hard errors [28]. In general, errors 

occur when the resistance distribution of a state crosses the threshold resistance that 

demarcates adjacent states. 

To correct soft and hard errors in PRAM, different system level techniques have 

been proposed. Techniques to reduce hard errors in SLC PRAM have been presented in 

[29]-[32], including wear leveling and a hybrid memory architecture that reduces the 

number of PRAM WRITEs. Another method identifies the locations of hard errors 

[30],[31] and iteratively partitions subblocks into smaller ones such that there is only one 

error in a subblock that can be corrected. For correcting soft errors in MLC PRAM, the 

method in [33] uses a time tag to record the retention time information for each memory 

block or page and this information is used to determine the threshold resistance that 

minimizes the soft error bit error rate (BER). Flexible error correction scheme based on 



 

  9 

BCH is proposed in [32]. Here the ECC unit works in low error correction capability 

mode most of the time and migrates to a stronger code when the BER increases. 

Unfortunately direct use of ECC for PRAMs results in large overhead both in 

terms of area and decoding latency and is not desirable. To reduce the ECC cost during 

decoding, in this thesis, we focus on improving the reliability of PRAM memory systems 

by a multi-tiered approach that spans device, circuit and architecture levels [34][35][36] 

[94][95].  

Approach: We first analyze the causes of hard errors and soft errors in MLC 

PRAM. Our analysis relies on an accurate device model developed at Arizona State 

University [37]. At the architecture level, we apply Gray coding and 2-bit interleaving to 

distribute the odd bits and even bits into an odd block that has low BER and an even 

block that has high BER. At the circuit level, we show that there is an optimal threshold 

resistance for a given data retention time and number of programming cycles that results 

in minimizing the total error rate (soft errors + hard errors). At the device level, we show 

that tuning programming current profile affects both the memory reliability as well as 

programming energy and latency. For instance, increasing current pulse width for 

programming RESET state or increasing number of current pulses for programming 

intermediate states results in higher energy but lower hard and soft error rates. This 

enable us to employ a simpler ECC such as Hamming on odd block and a combination of 

subblock flipping [30] and BCH based ECC on even block.  

While the above techniques helped improve the reliability of MLC PRAM, its 

timing performance is quite poor due to the long programming latency.  In order to 



 

  10 

improve the instruction per cycle (IPC) performance, we also proposed a PRAM+DRAM 

hybrid memory configuration that buffer the PRAM accesses. We analyzed the 

performance of the hybrid memory with respect to programming energy, IPC and lifetime. 

If the ECC unit is fixed, programming RESET state with larger current pulse width 

results in higher programming energy but longer memory lifetime. On the other hand, if 

the lifetime requirement is fixed, strategies with high programming energy, do not 

necessarily improve the system performance. Instead, a strategy with large current pulse 

width for programming RESET state but few current pulses for programming 

intermediate states achieves high IPC with low programming energy. 

1.3. Spin-torque Transfer Magnetic Random Access Memory 

Magnetoresistive random-access memory (MRAM) is a non-volatile random-

access memory technology under development since the 1990s. Spin-torque transfer 

magnetic random access memory (STT-RAM) is derived from spintronics. The data 

consists of a thin layer of insulator (spacer MgO) about ~1nm thick called magnetic 

tunneling junction (MTJ) sandwiched between two layers of ferromagnetic material [41]. 

Magnetic orientation of one layer is kept fixed and an external field is applied to change 

the orientation of the other layer. Direction of magnetization angle (parallel (P) or anti-

parallel (AP)) determines the resistance of MTJ which is translated into storage; parallel 

corresponds  low resistance signifying storage of bit ó0ô and anti-parallel corresponds to 

high resistance signifying storage of bit ó1ô.  

STT-MRAM requires much less WRITE current than conventional or toggle 

MRAM, although higher speed operation still requires higher current [42]. More 

http://en.wikipedia.org/wiki/Non-volatile_random-access_memory
http://en.wikipedia.org/wiki/Non-volatile_random-access_memory
http://en.wikipedia.org/wiki/Magnetoresistive_random-access_memory#cite_note-4


 

  11 

importantly, in STT-MRAM, switching threshold current which is the minimal current 

that can switch the cell successfully reduces with MTJ scaling, making it low power and 

highly scalable [43]. Compared to PRAM, STT-RAM also requires low WRITE current, 

has almost no endurance problem and faster READ/WRITE speed. However, it still has 

reliability problems in WRITE due to process variations [44]-[46]. These include 

variation due to the access transistor sizes (W/L), variation in Vth due to random dopant 

fluctuation (RDF), MTJ geometric variation and initial angle of the MTJ. The effect of 

access transistor on system performance has been investigated in [44] [47]. Errors due to 

these variations can be as high as 10
-1

 for WRITE-1 operation [44]. Fortunately, the error 

rate can be dropped to < 10
-5

 by tuning circuit parameters such as W/L ratio of the access 

transistor, changing the current pulse width during WRITE and increasing the voltage 

across the STT-MRAM cell. 

To analyze the reliability of STT-RAM memories, most recent work focus on the 

process variations of the MTJ and NMOS current driver. Besides process variation 

control at the device level and ECC at the system level, several studies also tried  to 

enhance the reliability of STT-MRAM by designing sensing scheme with more tolerant 

margin [45][46].  

Approach: In this work, we first study the causes of errors STT-RAM starting 

from first principles and model the probability of errors due to process variations. We 

show how circuit-level techniques can reduce some of the errors due to judicious use of 

increase in W/L ratio of the access transistor, higher voltage difference across the 

memory cell and pulse width adjustment in WRITE operation. For instance, we show that 



 

  12 

by applying a combination of WRITE-pulse width adjustment and voltage boosting at the 

circuit level the BER drops to 10
-5

. This enables us to use BCH code at the system level 

to achieve a block failure rate (BFR) of 10
-9

.  The proposed multi-tiered approach using 

parallel BCH(78, 64) improves latency by 20X  and reduces ECC energy by 90% 

compared to BCH(1145, 1024). This work was presented in [65]. 

1.4. Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 describes our work on 

improving the reliability of NAND Flash memories. This includes the error model 

followed by proposed product code with flexible error correction capability. Chapter 3 is 

on improving the reliability of MLC PRAM. It first analyzes the characteristics of soft 

and hard errors followed by a multi-tiered approach and finally a system-level evaluation. 

Chapter 4 describes our approach on improving the reliability of STT-MRAM.  Chapter 5 

summarizes this thesis. 



 

  13 

CHAPTER 2 

NAND FLASH MEMORY 

2.1. Introduction 

MLC NAND memories are dominant in the storage market due to their high 

storage density and low storage cost per cell. Unfortunately these memories have errors 

due to READ/WRITE disturbs, data retention and endurance failures. While most of the 

errors are considered to be random, with increased technology scaling, when the number 

of program/erase cycles is quite high, the probability of multiple bit upset (MBU) errors 

is likely to increase. In this chapter, we first describe ECC schemes for fully random 

single bit errors as well as combination of single bit and multi-bit errors. Specifically, we 

propose use of product codes which use BCH and RS codes along rows and Hamming 

codes along columns. Simulation results show that product codes can achieve better 

performance compared to both BCH codes and plain RS codes with less area and low 

latency. We also propose a flexible product code based ECC scheme that migrates to a 

stronger ECC scheme when the numbers of errors due to increased program/erase cycles 

increases. While these schemes have slightly larger latency and require additional parity 

bit storage, they provide an easy mechanism to increase the lifetime of the Flash memory 

devices. This work appeared in [20] [21]. 

Recent work on [22]-[24] has shown that MLC NAND Flash errors can be 

classified into data retention (DR) errors and programming interference (PI) errors. DR 

errors are dominant if the data storage time is great than 1 day and these errors can be 

reduced by refreshing the data. PI errors are dominant if the data storage time is less than 



 

  14 

1day and these errors can be handled by error control coding. In this work we propose a 

combination of data refresh policies and low cost ECC schemes to address the two types 

to errors where the refresh policy depends on P/E frequency of the application. We first 

apply Gray coding and 2 bit interleaving so that the BERs in MSB and LSB subpages of 

even and odd pages are lower and are comparable. Thus, the MSB and LSB subpages can 

share the same ECC unit resulting in reduced hardware overhead. The combination of 

Gray coding and adaptive refresh helps reduce the error rate so that low cost ECC scheme 

can be used. Finally we show how an appropriate choice of refresh interval and BCH 

based scheme can minimize energy while satisfying the reliability constraint. This work 

was presented in [95]. 

The rest of the chapter is organized as follows. The operation of Flash memories 

is briefly described in section 2.2. Error source analysis and error models are presented in 

section 2.3. Existing work has been summarized in section 2.4. The proposed product 

scheme including encoding/decoding flow is described in section 2.5. The simulation 

results comparing the candidate schemes are presented in section 2.6. The hardware 

designs of specific RS and Hamming encoder/decoder followed by comparison of area 

and latency of the candidate schemes are presented in section 2.7. The description and 

analysis of adaptive refresh technique are given in section 2.8. The conclusion and 

proposed work are given in section 2.9. 

2.2. NAND Flash Memory Organization and Operation 

NAND Flash memories were introduced by Toshiba in 1989. These memories are 

accessed much like block memory devices such as hard disks or memory cards. A NAND 



 

  15 

Flash memory bank consists of several blocks, where each block consists of a number of 

pages. The organization of a NAND Flash memory is shown in Figure 2.1. Typical page 

size for a NAND Flash memory is around 2KB to 16 KB (for multiple bit storage 

devices). For example, in an 8KB per page Flash memory, each memory bank consists of 

1024 blocks, and each block consists of 64 pages, each of size 8K bytes. We assume that 

each page includes both information bits and parity bits of ECC. Almost all NAND Flash 

memories rely on ECC to detect and correct errors caused by failures during normal 

device operation.  

 

Information + Parity

ECC

I/O Bus

Block

Page 

Buffer

1page=8KB;

1block=64pages;

1bank=1024blocks;

page

 
Figure 2.1.  NAND Flash memory architecture. 

There is a page buffer located between ECC block and memory that temporarily 

holds the data. During WRITE, data from I/O bus is serially encoded by ECC, and 

written to the desired page location from page buffer. During READ, ECC block 

processes data in page buffer serially and transfers it to the I/O bus.  Thus, the smallest 

unit that can be programmed or READ simultaneously is a page.  

The structure of a storage cell in a NAND Flash memory is similar to a regular 

MOS transistor except that there is an extra poly silicon strip, referred to as floating gate, 



 

  16 

between the gate and the channel. Threshold voltage of these transistors is controlled by 

adjusting the number of electrons trapped in the floating gate. There are several 

techniques that are used to program or erase the cell such as source side injection (SSI), 

Fowler-Nordheim tunneling (FN), channel hot electron injection (CHE) etc. Since the 

floating gate is electrically isolated by an insulating layer, electrons trapped in the 

floating gate stay in the cell. Threshold voltage of this transistor is controlled by adjusting 

the number of electrons trapped in the floating gate. In order to improve the storage 

capacity of NAND Flash memories, multiple threshold levels are employed on a single 

cell, where each threshold level corresponds to multiple bits of data. For instance, ς 

levels of threshold voltage are necessary to store Ë bits of data. We assume that multiple 

bits in a single cell correspond to the same codeword. 

Figure 2.3 illustrates the distribution of threshold voltages for SLC and MLC (3 

bit) storage. As the number of storage levels increase, storage density of a cell improves 

at the expense of reduction in reliability [50].  

  

Vt

Vt(a)

(b)

N
u

m
b

e
r 

o
f 
c
e

lls
N

u
m

b
e

r 
o

f 
c
e

lls

 
Figure 2.2. Conceptual representation of threshold voltage distributions for (a) SLC and 

(b) 3-bit MLC in Flash memory cells. 

 

The Flash cells are organized in a two dimensional grid as shown in Figure 2.3. 

Word lines are connected to the gates of all floating gate transistors of the same page in 



 

  17 

the horizontal direction. These are used to select the page to be READ or programmed. In 

the vertical direction, a cell string consists of a string select gate connected to voltage 

supply, a series of floating gate transistors and a source gate connected to the ground.  

Page Buffer

Word line

Word line

Word line

Source line

String select 

line

Bit line Bit line Bit line

One page

One cell string

Ground select  

line

 

 Figure 2.3. Circuit layout of a NAND Flash memory block.  

 

Before programming a Flash page, the whole block is first erased. During erase, 

all charge is removed from the floating gate and the threshold voltage is set to the lowest 

value. Next multiple programand-verify steps are used to set the correct threshold voltage 

value. A high voltage (e.g. 20V) is applied only to the selected word line and a moderate 

voltage (e.g. 10V) is applied to all unselected word lines in the same cell string to ensure 

connectivity. The string select transistor is used to control the connection between bitline 

and the floating gate string. The source gate transistor is used to control the connection 

between ground and the floating gate string. Electrons that gain high velocity tunnel into 

the floating gate, causing the threshold to increase. For those cells which are not selected, 

their threshold voltage remains unchanged. In each WRITE cycle, threshold voltage of 



 

  18 

the designated cells is increased by a small amount. Every WRITE cycle is followed by a 

test cycle.  If the cellôs threshold voltage is higher than the reference value, the program-

andïverify iteration stops; otherwise, the cells are programmed again by increasing the 

programming voltage (Vpp) by ȹVpp.  

During READ, bit lines are pre-charged to 6  and all the cells, including two 

select gates, along the floating gate string are set on. If word line voltage is less than the 

threshold voltage of selected cell, selected cell is off and pre-charged bit line remains 

high voltage; otherwise, select cell is on and it discharge the bit line through the floating 

gate string. 

2.3. Errors in NAND Flash Memories 

Bit errors in Flash memories can be classified into hard errors and soft errors. 

Hard errors, which cannot be recovered in the next programming/erase (P/E) cycles, 

consist primarily of programming interference (PI) errors and also cell breakdown errors. 

During programming, applying high voltages to non-programmed cells results in leakage 

and tunneling from body to floating gate [4][5][6]. Cell breakdown errors result from 

oxide breakdown due to Flash P/E limitation and result in permanent failure bits in 

memory array [13][4].  

Soft errors, which can be recovered in the next P/E cycle, are mainly retention 

errors. Retention errors are caused by the loss of electrons from the floating gate over 

time. As the electrons leak away, the corresponding threshold voltage of the cell 

decreases and failures occur if the threshold voltage crosses the READ reference voltage 

between adjacent states. 



 

  19 

Note that, compared to SLC Flash memory, MLC Flash memory has more 

programming interference errors and retention errors. Multi-step programming introduces 

more variations into the threshold voltage, and increases the programming interference 

errors. Furthermore, MLC Flash data retention is orders of magnitude lower than SLC 

Flash. This is because, in MLC, all the programmed levels must be allocated in a 

predetermined sized voltage window. This leads to reduced spacing between adjacent 

programmed levels, making the MLC memories less reliable.  

2.3.1  Error Models 

The reliability of Flash memory is characterized by its data retention time and 

lifetime in terms of P/E cycles. Data stored in NAND Flash cells are required to remain 

valid for a certain period, typically around 3~10 years. This period is referred to as data 

retention time. Also for a certain BER constraint, the lifetime of MLC Flash memory is 

defined as a number of P/E cycles, usually of the order of 10,000 P/E cycles [4].   

 

                                     (a)                                                                              (b) 

Figure 2.4. (a) Raw BER and (b) MBU probability as a function of number of 

program/erase cycles. 

 



 

  20 

First we characterize the soft error rate due to shift in the Vth distribution. We 

model the 6  distribution with a continuous Rayleigh distribution in a way similar to that 

in [51]. The increased variation causes the long tail of 6  distribution to extend to 

adjacent voltage states. The probability of this phenomenon increases when the number 

of P/E cycles is quite high. In order to determine the 6 variance as a function of the 

number of P/E cycles, we match the error rate of our model with the experimental results 

for MLC Flash memory in [4]. Then, we use curve fitting to extrapolate the results for 

higher number of P/E cycles. Figure 2.4(a) shows the BER curve versus number of P/E 

cycles. Note that when the number of P/E cycles increases from 23K to 27K, the raw 

BER increases from 2.2*ρπ to 4.0*ρπ .  

To calculate the probability of MBU, we calculate the number of instances where 

the long tail of the 6  distribution crosses into neighboring voltage states. Note that the 

probability of the long tail crossing into the immediate neighboring state results in a 

single bit error (SEU), and the probability of the long tail crossing over more than one 

state results in MBU. Figure 2.4(b) shows the probability of MBU errors as a function of 

the number of P/E cycles. This is approximately 2.3% at 40K P/E cycles. We extrapolate 

this curve and project that the MBU probability in MLC Flash will cross 10% towards the 

end of its rated lifetime, assumed to be around 60,000 cycles. 

We consider two error models: fully random error model and a model based on a 

mixture of random and MBU errors. Based on our simulations, we found that probability 

of the 6 distribution tail crossing into the voltage state of the immediate neighboring 

state is much higher than the probability of it crossing into the voltage state of a neighbor 



 

  21 

that is one removed. So in our model, we assume that the probability of a 2-bit error is 

significantly higher than a 3-bit error. Specifically, we assume that the probability of 

MBU decreases exponentially as the MBU size increases.   

Random Error Model: Errors are independent and uniformly distributed among 

the cells in one page. 

Hybrid Error Model: Errors are a combination of random (90%) and MBU(10%) 

errors. The probability of a MBU error when the burst size is x+1 bits is 10% of the 

probability of a MBU error when the burst size is x bits. The maximum burst size is 6. 

This can be expressed as ÆØ Æρ πzȢρ  for ρ Ø φ and  В ÆË ρ . 

 

 

Figure 2.5. MBU probability as a function of MBU size. 

Figure 2.5. shows the MBU probability statistics vs. size of MBU for the 

proposed hybrid model; The MBU probability is derived with respect to SEU, e.g., a 0.1 

probability for 2-bit MBU in the burst model indicates that 10% of all SEU are caused by 

MBU of size 2.  

 



 

  22 

2.2.2 Performance Metrics 

We compare the different ECC schemes with respect to the following 

performance metrics: 

Redundancy rate:  In an (n, k) linear block code, n is the length of the codeword, k 

is the number of the information bits, and the redundancy rate is Î ËȾÎȢ 

Hardware area: Area of encoder and decoder in ECC block. 

Encoding/decoding latency:  Time for encoding/decoding data in one page. 

Bit error rate (BER):  Number of received bits that have been altered due to noise, 

interference and distortion, divided by the total number of bits.  

2.4. Related Work 

In recent year, these has been comprehensive work on characterizing the data 

retention and program interference (PI) errors of Flash memories [4]-[6],[52]. Program 

interference errors are caused by parasitic capacitance coupling with adjacent cells. 

Retention errors are caused by leakage of the electrons trapped in the floating gate. 

Measured results in [52][5] show that Vth  shift due to PI errors in the high voltage 

direction while the Vth  shift due to retention errors is in the low voltage direction. Vth 

distribution was modeled in [5] and power law based equations were used to derive BER 

performance as a function of P/E cycles [53]. The BER curves were also validated using 

data from a variety of manufactures and technologies (3Xnm, 4Xnm and 5Xnm). Similar 

work that covered different technologies has also been proposed in [23]. Measured 

memory error results from [23] further show that the reliability of NAND Flash degrades 

with technology scaling. Moreover retention errors are dominant (150 times~450 times 



 

  23 

higher than PI errors) in sub-30nm technology. A very recent paper [25] provided ratio of 

PI errors and retention errors for up to 10
6
 P/E cycles. They also showed that retention 

errors can be eliminated by data refresh technique at the expense of extra energy. 

The detailed error characterization in [23] showed that for both data retention 

errors and PI errors, the number of ó0->1ô errors and ó1->0ô errors are not equal and that 

most of the errors correspond to the Vth decrease of ô10->00ô or ô00->01ô. This property 

was utilized in the proposed asymmetric coding scheme which increases the number of 

ó1ôs in LSB pages and increases the number of ó0ôs in MSB pages resulting in lower BER.  

Another error characteristic that has been exploited in [54][25] is that fact that 

retention errors are significantly larger than PI errors. To specifically reduce retention 

errors, the method in [54] proposed to refresh data at a certain frequency. Since the 

internal data refresh operation could interfere with normal I/O requests, a scheduling 

strategy to minimize the impact on system performance was proposed in [54]. Similar 

data refresh technique with adaptive refresh frequency was proposed in [25]. The 

refreshing frequency was tuned corresponding to the average access rate to NAND Flash 

memory and the number of P/E cycles.  

To deal with errors at the architecture level, wear leveling distributes the data to 

different physical locations so that all memory blocks are used approximately the same 

number of times [9]. Ben-Aroya and Toledo [55] quantitatively evaluated different wear-

leveling algorithms, Bad block management, which marks blocks once they show un-

recoverable errors and avoids mapping data to the same bad block has also been shown to 



 

  24 

improve the reliability [56]. The combination of wear-leveling and garbage collection 

and the involved design tradeoffs have been investigated in [57, 58].  

ECC techniques have also been used in the past to improve NAND Flash 

reliability. Single error detection/correction codes, such as Hamming codes, used to be 

sufficient to enhance the reliability of SLC Flash memory systems [59]. In recent years, 

long linear block codes with high error correction capability are used because the single 

error correction capability of Hamming code is no longer sufficient. The Bose-

Chaudhuri-Hocquenghem (BCH) code and its subclass Reed-Solomon (RS) code are the 

best-known linear block codes for memories. Pipelined or bit-parallel BCH code has been 

used in [11]-[13]. Schemes based on concatenation of BCH codes and Trellis Coding 

Modulation (TCM) have recently been proposed in [16]. While they reduce the error 

correction burden of a single BCH code, they require five (instead of four) threshold 

states per cell. ECC based on RS codes have been used in several commercial MLC Flash 

memories [15][16][17]. They use plain RS codes and can correct up to 24 errors in 512B, 

at the cost of larger hardware and coding latency.  

2.5. Product Scheme for MLC NAND Flash Memory 

2.5.1 Product Code Scheme: Basics 

Product code is a technique to form a long length code with higher ECC 

capabilities using small length constituent codes. Compared to plain long length codes, it 

has high performance from cross parity check [51], and low circuitry overhead since the 

constituent code words are of low error correction capability. 



 

  25 

Let # be a Î, Ë  linear code, and let # be a Î,Ë  linear code. Then, a 

(ÎÎ, ËË) linear code can be formed where each codeword can be arranged in a 

rectangular array of Î columns and Î rows such that every row is a codeword in #, 

and every column is a codeword in #, as shown in Figure 2.6. This code array can be 

formed by first performing row (column) encoding then column (row) encoding on the 

data array of size of Ë *Ë . The cross parity block in the bottom right is of size (Î

Ë)* Î Ë   and is obtained by encoding the row (column) parity along the other 

dimension, i.e., column (row). 

 

Information 

Message Row

Parity

Column

Parity

k1

k2

n2-k2

n1-k1

Column Coding (n2,k2) Cross Parity
 

Figure 2.6 Product code scheme. 
 

If code ὅhas Hamming distance Ὠ and code ὅ has Hamming distance Ὠ, the 

minimum weight of the product code is exactly ὨὨ[51]. Thus increasing the minimum 

weight of each code enhances the number of error patterns which can be corrected in the 

code array. Product code using single-error-correction codes in each dimension has been 

used in [17] [18]. In [17], 8-bit even-parity code in both dimensions with bit interleaving 

has been used for SRAM caches of size 256*256 bits. In [18], 8-bit even-parity code has 



 

  26 

been used in interconnection networks. Both cases demonstrated the use of product codes 

for enhanced error correction performance.  

In order to provide for high error correction capability in Flash memories, we 

propose to use a strong code with multiple error correction capability along at least one of 

the dimensions. Since data is stored along rows in memory, we propose to use stronger 

ECC along rows so that both random and burst errors can be dealt with efficiently. 

Furthermore, we choose a long codeword along this dimension to provide good coding 

performance. 

We studied the performance of product codes based on BCH and RS codes. When 

long BCH/RS codes are used along the rows for high coding performance, for fixed page 

size, the length of the codeword along the rows is much shorter. Use of cyclic or linear 

block codes with multiple error correction capability along columns is an overkill and 

results in unnecessary hardware and latency overhead. So we choose Hamming codes 

along the columns; they have low overhead and provide enough coding gain for the 

product code based scheme. 

 
                                       (a)                                                                       (b) 

Figure 2.7 Performance comparison between BCH-Hamming and RS-Hamming in (a) 

random and (b) hybrid error models. 



 

  27 

 

The simulation results for RS(127, 121) +Hamming(72, 64) and BCH(1023, 993, 

3)+Hamming(72,64) for the two error models are illustrated in Figure 2.7. These coding 

schemes have similar redundancy overhead, namely 15.8% for BCH-Hamming and 16.5% 

for RS-Hamming. We see that they provide similar performance, with RS+Hamming 

having a slightly better performance than BCH +Hamming for hybrid error model. This is 

to be expected since RS codes have better performance for burst errors. Of the two 

schemes, RS+Hamming is more attractive in terms of hardware complexity for similar 

code rate and codeword length in terms of number of bits. For starters, in the Key-

Equation block, the adders and multipliers in RS(127, 121) operate in GF(ς) and have 

lower complexity than those in BCH (1023,  993,  3) which operate in GF(ς ).  

RS(127,121) also has higher throughput because syndrome calculation in RS 

decoder operates with fewer number of coefficients and Chien search needs to check 

fewer number of finite field elements [20]. For iso-throughput, BCH(1023, 993, 3) has to 

parallelize its encoder, syndrome calculation unit and Chien search blocks, which results 

in larger area. All these factors contribute to RS(127,121)+Hamming(72,64) requiring 

less area than BCH(1023,99,3)+Hamming(72,64) for the same throughput. 

2.5.2 Product Code Scheme: Encoding and Decoding 

Figure 2.8(a) shows the encoding flow of the product code scheme, and Figure 

2.8(b) gives an example of the physical address mapping of 

RS(255,247)+Hamming(72,64) product code when the page buffer size is 16KB. Note 

that the physical mapping is different for different product codes. We assume that the 



 

  28 

Flash controller has the capability to reallocate the storage space to support the different 

product codes. 

 

Data Row

Page Buffer Information
Column & 

Cross parity

...

Row RS Encoder

Row Parity

Column(Cross) Hamming Encoder

Page 

Decoder

Parity Storage

4

3

1 23

...

Addr

 
(a) 

Information
Column & Cross 

Parity
Row Parity Unused space

0B to13831B 13832B to 15871B 15872B to 16319B 16320B to 16383B

 

(b) 

Figure 2.8 (a) Product code encoding flow. (b) Physical mapping of information and 

parity bits of RS(255,247)+Hamming(72,64) product code on a 16KB page buffer.  

 

For the RS(255,247)+Hamming(72,64) product code, during encoding, the RS 

encoder READs 247 information bytes at a time and generates 8 bytes or 64 bits 

corresponding to row parity. The row parity bits are stored in the pre-allocated region in 

the page buffer. Next, the Hamming encoder operates on the information and row parity 

bits, and generates the column and cross parity bits. The information bits are READ with 



 

  29 

a stride of 247x8, and the row parity bits are READ with a stride of 8x8. After column 

encoding, the column&cross parity bits are stored in the corresponding section of the 

page buffer. In the allocation shown in Figure 2.8(b), there is 64B unused space which 

can be used to store the beginning address of the different data regions for the Flash 

controller.   

The decoding flow of RS+Hamming product codes is illustrated in Figure 2.9. For 

column decoding shown in Figure 2.9(a), the information bits in the page buffer are 

READ out with a stride of 247x8, the column&cross parity bits are READ out with a 

stride of 1 and the row parity bits are READ with a stride of 8*8. The Hamming decoder 

corrects errors in information bits and row parity bits, and updates these bits in the page 

buffer. For row decoding, shown in Figure 2.9(b), the updated information and row parity 

bits are both READ out with a stride of 1, processed and the corrected information bits 

are transferred to the I/O bus.    

 

Updated

Information

Page Buffer

Address 

Generator

Information

Column Decoder

Row Parity
Column & 

Cross parity

Hamming

Decoder

Hamming

Decoder

Updated

Row 

parity

Page Buffer
Address 

Generator

RS Decoder

Information

Row Decoder

Row Parity
Column & 

Cross parity

Information 

Stream

 

                        (a)                                                             (b) 

Figure 2.9. Decoding of product code in Flash memory. (a) column decoding and (b) row 

decoding. 

 



 

  30 

2.5.3 Error Location Distribution 

The number of errors that product codes can correct depends on the error location 

distribution. If we use RS code (t=3) along rows and Hamming code along columns, we 

can only guarantee correction of 7 errors. In the error distribution shown in Figure 2.10(a), 

the Hamming decoder cannot correct the errors along the columns since there are 2 per 

column. The RS decoder also cannot correct these errors since there are 4 per row. In 

Figure 2.10(b), the Hamming decoder corrects the single error along the column and then 

the row decoders can correct the remaining errors (3 per row). In the extreme case, the 

proposed schemes can correct a very large number of errors. For instance, for a 16kB 

page with RS(255,247) along rows and Hamming(72,64) along columns, the proposed 

scheme can correct 3 bytes (24 bits) of errors along each of the 56 rows and an additional 

255*8-24 single bit errors along the remaining columns, leading to a total of 3360 errors. 

However, such a scenario is likely to never exist. 

X ...X...X......

X ...X...X......

X ...

...
...

...

One 

Column

X

   

X ...X...X......

X ...X...X......

X ...

...
...

...

One 

Column

 

                                      (a)                                                                 (b) 

Figure 2.10 (a) The scenario in which 8 errors can not be corrected in a product code with 

t=3 RS code along rows and Hamming code along columns. (b) An example of a 

distribution of 7 errors which can be corrected by this scheme. 



 

  31 

2.5.4 Flexible Schemes 

 

As the number of P/E cycles in Flash memories increases, the raw error rate 

increases [6]. This phenomenon was demonstrated in Figure 2.4 as well. The lifetime of a 

Flash memory device refers to the number of P/E cycles for which the device is 

operational, that is, it can guarantee the target BER. Thus when the raw BER increases 

due to increased usage, the flexible ECC scheme migrates to a stronger ECC code and 

thus can maintain the target BER for a longer time. Figure 2.11 illustrates the operation 

of the flexible scheme. 

 

 
Figure 2.11. Target BER is achieved by using flexible ECC. Lifetime increases from T1 

to T2.  

In the proposed flexible product code scheme, we adjust the error correction 

capability of the Hamming codes. We keep the same RS codes for row error correction 

but split the single Hamming code along columns into two shorter and hence stronger 

Hamming codes as illustrated in Figure 2.12. This is a lot less complicated than adjusting 

the strength of the RS codes. Furthermore, parity matrix of the shorter Hamming code, 



 

  32 

for example, (39, 32) can be derived from the longer code, for example (72, 64) code. 

This removes the necessity to have extra circuitry for each Hamming configuration as 

will be explained in Section 2.7. 

RS

                    

é

H
am

m
ing(72, 64)

Row Parity

C
olum

n 

P
arity

Cross Parity

RS

H
am

m
ing(39, 32)

             

A

Row Parity

C
olum

n 

P
arity

Larger Cross Parity

H
am

m
ing(39, 32)

             

A                     

é

 
Figure 2.12. Proposed flexible ECC scheme. 

 

Area and latency of flexible schemes slightly increase as shown in the following 

sections. Also redundancy rate of the flexible scheme increases due to use of shortened 

Hamming codes. The overhead is still a small price to pay compared to the increase in the 

error correction capability which is required when MLC NAND Flash memories get close 

to the rated lifetime.  

2.6. Simulation Results 

In this section, we present RS+Hamming product code based schemes for 

different page sizes (section 2.6.1) and compare their performance (section 2.6.2).  

2.6.1 Candidate Product Codes 

Table 2.1 lists possible combinations of RS and Hamming code for 8KB and 

16KB page size.  For 8KB page, if we use RS(127,121) along rows, then there are 73 bits 



 

  33 

in each column. These 73 bits must include both information bits and parity bits of the 

Hamming codes.  Thus one Hamming(72, 64) code or two shortened Hamming(39, 32) 

codes can be used to process data along column. A configuration with two shorter 

Hamming(39, 32) codes has higher performance but also higher redundancy rate. 

Shortened codes contain the same number of parity bits as regular codes, and extra zero 

bits are added after information bits during encoding but not stored in memory [11]. For 

instance, when two shortened Hamming(39,32) codes are used, out of the 73 bits along a 

column, only 73-2x14=59 bits are information bits. These 59 bits are split across the two 

codes. The first code is built by padding 3 zeroes to 29 information bits and encoding the 

32 bits by the Hamming(39,32) encoder to generate 7 parity bits. Similarly the second 

code is built by padding 2 zeroes to the 30 information bits and then encoding. At the end 

29+30=59 information bits and 2x7=14 parity bits are stored; the zeroes are not stored.  

Now if we use RS codes in GF (ς),  that is (RS (255,k)) along rows,  there are  

32 bits  in each column for Hamming codes. Thus only Hamming(32, 25) is suitable 

which results in a high redundant rate and is not preferable. So for 8KB per page 

memories, RS(127,121) along rows is a better choice.  

For 16KB page, RS (127, 121) along rows results in 147 bits in each column in 

product code. One Hamming (147,138) or two Hamming(72, 64) codes can be used along 

columns. Two Hamming(72, 64) has higher performance than Hamming (147, 138) and 

the 2*72=144 bits can be housed easily. Now if RS(255, 247) is used along rows, then 

there are 64 bits in each column. All the 64 bits can be used to form one shortened 

Hamming (72, 64) code or two shortened Hamming (39, 32) codes without unused bits. 



 

  34 

The scheme with one Hamming (72, 64) code has lower redundancy rate but lower 

performance, as expected. 

Table 2.1 Candidate ECC schemes for 8KB and 16KB page Flash memories. 

Page buffer size RS code (row) Hamming code (column) 

 

8KB 

RS(255,239)  

RS(127,121) One Hamming(72,64) 

RS(127,121) Two Hamming(39,32) 

 

 

16KB 

RS(255,223)  

RS(255,247) One Hamming(72,64) 

RS(255,247) Two Hamming(39,32) 

RS(127,121) One Hamming(147,138) 

RS(127,121) Two Hamming(72,64) 

 

2.6.2 Performance Comparison 

We compare the performance of product codes and plain RS codes with the same 

Galois Field order for purely random errors as well as hybrid errors. RS codes used in 

product schemes are in GF (ς) or GF (ς), so we choose RS (255, 239) in GF (ς) with 

error correction capability t=8 as the plain RS code. We also compare the performance 

with BCH (1023, 983, 4) in GF (ς) which has half the code length of RS (255, 239) and 

an error correction capability of t=4.  



 

  35 

 
Figure 2.13. Performance comparison between product schemes, plain RS code and BCH 

code using random error model 

 
Figure 2.14 Performance comparison between product schemes, plain RS code and BCH 

code using hybrid error model. 

 

Figure 2.13 and Figure 2.14 show the BER performance for random error model 

and hybrid error model. For both error models, product RS codes have much better 

performance than BCH(1023, 983, 4) and plain RS(255, 239). While the performance of 

  0.01  0.009  0.008  0.007  0.006  0.005  0.004  0.003  0.002  0.001 0.0009
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Raw Bit Error Rate

B
it
 E

rr
o
r 

R
a
te

 a
ft

e
r 

D
e
c
o
d
in

g

 

 

RS(255,239)

BCH(1023,983,4)

16KB:RS(255,247)+Hamming(72,64)

8KB:RS(127,121)+Hamming(72,64)

  0.01  0.009  0.008  0.007  0.006  0.005  0.004  0.003  0.002  0.001 0.0009
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Raw Bit Error Rate

B
it
 E

rr
o
r 

R
a
te

 a
ft

e
r 

D
e
c
o
d
in

g

 

 

RS(255,239)

BCH(1023,983,4)

16KB:RS(255,247)+Hamming(72,64)

8KB: RS(127,121)+Hamming(72,64)

16KB:RS(127,121)+Hamming(147,138)



 

  36 

BCH code remains the same for both error models, performance of the plain RS code 

improves for the hybrid error model. For instance, for raw BER of ρπȟ

ÔÈÅ ÄÅÃÏÄÅÄ BER of RS(255, 239) drops from 1*ρπ in random error model to 

6*ρπ in hybrid model. With a more powerful RS code, the number of bit errors in a 

codeword that can be corrected increases as expected, but the performance is still worse 

than the product codes. This is because in the product code scheme, after Hamming 

decoding, the number of error syndromes left in each row is few, so short RS codes with 

low error correction along rows are sufficient to correct the MBU errors. Figures 2.13 and 

2.14 also demonstrate that BER of product schemes is about 1-2 decades lower than that 

of plain RS code. In addition, product codes have better performance compared to 

concatenated BCH+TCM code which has been recently presented in [13]. 

 
Figure 2.15. Performance comparison between regular product schemes and flexible 

schemes in hybrid error model. 

 

  0.01  0.009  0.008  0.007  0.006  0.005  0.004  0.003  0.002  0.001 0.0009
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Raw Bit Error Rate

B
it
 E

rr
o

r 
R

a
te

 a
ft

e
r 

D
e

c
o

d
in

g

 

 

16KB:RS(127,121)+Hamming(72,64)*2

16KB:RS(255,247)+Hamming(39,32)*2

16KB:RS(255,247)+Hamming(72,64)

16KB:RS(127,121)+Hamming(147,138)

8KB:RS(127,121)+Hamming(72,64)

8KB:RS(127,121)+Hamming(39,32)*2



 

  37 

Figure 2.15 shows the gain in performance of product codes when two short 

Hamming codes are used instead of one long Hamming code along columns. Table 2.2 

presents the BER performance of the different schemes for two BER values. Note that for 

both the cases, product schemes with two shorter Hamming codes along columns have 

one decade lower BER than those with single long Hamming code along columns.  For 

instance, when raw BER is 4zρπ , for 8KB paged Flash, BER is improved from 

9*ρπ to 1*ρπ.  

Table 2.2  Performance comparison between regular and flexible schemes. 

 BER 

ECC Schemes Raw BER at 7*ρπ Raw BER at 4*ρπ Raw BER at 1*ρπ 

8KB: RS(127, 121) 

+Hamming(72, 64) 
2*ρπ 9* ρπ 3*ρπ 

8KB: RS(127, 121) 

+Hamming(39, 32)*2 
5*ρπ 1*ρπ 3*ρπ 

16KB: RS(255, 247) 

+Hamming(72, 64) 
2*ρπ 2*ρπ 7*ρπ 

16KB: RS(255, 247) 

+Hamming(39, 32)*2 
8*ρπ 2*ρπ  1*ρπ 

16KB: RS(127, 121) 

+Hamming(147,138) 
3*ρπ 2*ρπ 7*ρπ 

16KB: RS(127, 121) 

+Hamming(72, 64)*2 
7*ρπ 1.5*ρπ 6*ρπ 

 

Table 2.3 compares the performance of regular and flexible schemes with respect 

to number of P/E cycles when the target (decoded) BER is ρπ. This table is derived 

from Figure 2.15. We see that when raw BER increases from 2.2*ρπ ὸέ  4.0*ρπȟ

ὸέ ὥὧὬὭὩὺὩ ὄὉὙ έὪ ρπȟ we move from RS(127, 121)+Hamming(147, 138) to RS(127, 

121) + two Hamming(72, 64). From Figure 2.15, we see that this translates to an increase 

in the number of P/E cycles from 23K to 27K.   Finally, performance of product code 



 

  38 

schemes improves with increasing number of iteration similar to Turbo and LDPC 

schemes. However, the improvement from 1 to 2 iterations is quite small and does not 

justify the large latency and power overhead.  

Table 2.3.  Comparison of regular and flexible schemes with respect to number of P/E 

cycles for decoded BER=ρπ 
 

ECC Schemes Raw BER Number of 

P/E cycles (K) 

8KB: RS(127, 121) +Hamming(72, 64) 2.6*10E-3 25 

8KB: RS(127, 121) +Hamming(39, 32)*2 4.0*10E-3 27 

16KB: RS(255, 247) +Hamming(72, 64) 2.2*10E-3 23 

16KB: RS(255, 247) +Hamming(39, 32)*2 3.3*10E-3 26 

16KB: RS(127, 121) +Hamming(147,138) 2.2*10E-3 23 

16KB: RS(127, 121) +Hamming(72, 64)*2 4.0*10E-3 27 
 

2.7. Hardware Implementation and Tradeoffs 

In this section, the hardware implementations of RS and Hamming codes are 

presented.  We first introduce RS decoder structure in section 2.7.1, followed by 

Hamming encoder/decoder in section 2.7.2. Next we present the area, latency tradeoffs of 

the competing schemes in section 2.7.3. 

2.7.1 RS decoder Structure       

Figure 2.16 shows the block diagram of a RS decoder using pipelined degree-

computationless modified Euclidean (PDCME) algorithm [60]. First, syndrome 

calculation block checks the errors and generates syndromes for Key-Equation block.  

Based on DCME (Degree Computationless Modified Euclidean) algorithm [61], Key-

Equation block processes each syndrome using 2t iterations to generate error locations 

and error value polynomials. Chien search block and Forney block receive these two 



 

  39 

polynomials and calculate error locations and error values, respectively. Next, error 

values at the corresponding locations are eliminated in information message, which is 

delayed by FIFO (first in first out) register buffers. Figure 2.17 shows the corresponding 

pipelined time chart [62]. 

 

Syndrome Computation Key Equation Solver Chien Search

Forney Algorithm

Error

Correction

RS decoder Main Controller

Received 

message
Corrected 

Output

FIFO (Delay Buffer)

 

Figure 2.16.  Reed-Solomon decoder using pipelined degree-computationless modified 

Euclidean (PDCME) algorithm. 
 

      

Received Sequence code word 1 Received Sequence code word 2 Received Sequence code word 3

Syndrome calculation

KES

Error location and error correction

Code word 1  Code word 2

N cycles

Delay of decoding 1 code word 

Chien&Forney 

Algorithm

 
Figure 2.17  Pipelined time chart of RS decoder. 

 

In the pipelined decoding flow, for an (n, k) RS code with t error correction 

capability, syndrome calculation part takes n cycles due to the serial input order of code 



 

  40 

word. The decoding delay of Key-Equation block depends on the structure of processor 

element (PE) array. For achieving the shortest delay, a systolic array of 2t PEs is used and 

syndrome sequence is processed once by each PE serially [60].  For achieving the 

smallest area, single PE scheme with FIFO registers is implemented [61]. Due to data 

dependence, the output of single PE can not be transferred back to its input end directly. 

Thus extra FIFO registers are needed to store the last iteration results which are then 

transferred back for the next iteration. The delay of 2t PE scheme is 2t cycles while that 

of the single PE scheme is 4Ô cycles. Considering that t is usually from 2 to 16 for RS 

codes in GF(ς ) or GF(ς ), Key-Equation block needs less cycles than syndrome 

calculation part  and so the Key-Equation calculation block has to wait for  data from the 

syndrome calculation block. These idle cycles are utilized in parallel RS decoder 

architecture in which there are multiple syndrome computation units, and these units 

ñfeedò syndromes of different code words to the Key-Equation circuitry [61].  The delay 

of Chien&Forney algorithm is usually less than 20 cycles; it always finishes processing 

the output of Key-equation block before receiving data corresponding to the next 

codeword.   

The number of parallel syndrome computation blocks depends on the delay of the 

Key-Equation calculation block. Since 2t PEs and single PE schemes represent extreme 

cases in delay and area, we propose a method with fewer than 2t PEs which strikes a 

balance between hardware overhead and delay. Assuming each PE is pipelined by a 

factor of q, 2t PE systolic array has 2t*q pipelined levels. During processing 2t 

syndromes, only 2t/(2t*q)=1/q of total circuitry is active. Thus, this scheme has high 



 

  41 

throughput but low workload. The single PE scheme, which is active all the time, has 2t-q 

extra FIFO registers. While its area is very small (1/2t factor small) compared to the 2t 

PE scheme, when t is high, the delay of Key-Equation block, which is 4Ôȟ could be 

longer than the syndrome calculation block n. For example, for a typical value of q equal 

to 5 as in [60]-[62], for RS (255, 223), t=16, the single PE scheme, needs 4Ô =1024 

cycles to process syndrome sequence which is significantly larger than n=223. Also it 

needs 2t-5=27 FIFO registers.  

 

FIFO

Less than q

FIFO

(2t-q)

PE PE PE PE PESyndromes ... ...

PEsê úqt /2

2t PEs
 

Figure 2.18 Proposed Architecture for Key-Equation block. 

 

In the proposed scheme, we replace 2t-q FIFO registers of the single PE scheme 

with another PE as long as the number of extra FIFO registers is more than q; the 

corresponding architecture is shown in Figure 2.18. Thus the number of PEs in this 

scheme is ỗςÔȾÑỘ, and 2t- ỗςÔȾÑỘz Ñ  FIFO registers are needed. Since all syndromes need 

to be processed 2t times, the proposed ỗςÔȾÑỘ PE array needs to iterate 
ỗ ȾỘ

 times, and 

the latency is ςÔz
ỗ ȾỘ

 cycles.  Such a scheme keeps all PEs active all the time.  



 

  42 

Compared to the 2t PE scheme, the proposed scheme has significantly lower hardware 

overhead and slightly lower throughput. For the example case of RS (255, 239), q is 5, 

we can use 3 PEs and one register to form Key-Equation calculation block. The 

syndrome sequence needs to pass through them six (ổρφȾσỖ=6) times, and the delay is 

(5*3+1)*(ổρφȾσỖ) =96 cycles. In contrast, Key-Equation block delay of 2t PE scheme is 

2t*q= 80 cycles, which is shorter than the delay of the proposed scheme, but contains 

2t=16 PEs which is 5 times that of the proposed scheme. 

 

Table 2.4. Implementation of proposed scheme for different RS codes 

 

ECC Schemes Number 

of   PEs 

Number of 

FIFO 

Registers 

Delay of 

Key-Equation 

Block (cycles) 

Number of 

Syndrome Cal. 

Blocks 

RS(255,247) 2 0 40 5 

RS(255,239) 3 1 96 2 

RS(127,121) 1 1 36 3 

     

For a pipelined RS decoder, decoding delay of a page is the sum of syndrome 

calculation delay plus the delay of Key-equation and Chien&Forney blocks of the last 

codeword. For a 16KB page using RS(127,121), there are 148 RS decoding computations 

along a row. Three parallel syndrome calculation units process three RS codes at once, 

and so the delay is ổρτψȾσỖ *127 cycles.  The delay of Key-equation of the last codeword 

is 36, and the delay of Chien&Forney blocks of the last codeword is 18. Thus, the total 

delay of RS (127,121) parallel decoder is ổρτψȾσỖ *127+36+18=6404.  Table 2.5 

describes the decoding delay of different RS codes for 8KB and 16KB page sizes. 

 



 

  43 

 

 

 

 

Table 2.5. Delay of RS decoders of different codes 

 

Table 2.6 shows the synthesis results of RS (63, 59) code in 45nm technology 

using Synopsys cell library [63]. The delay of the critical path is 1.07ns and the core 

clock rate is 800MHz. The area of syndrome calculation, key equation and 

Chien&Forney in blocks Table 2.6 do not include interconnection between these three 

blocks.  

Table 2.6.  Synthesis results of RS (63, 59) decoder. 

 Syndrome Key Equation Chien & Forney 

Cell Area(ÕÍ )     235       1581         1507 

Critical Path (ps)     550         660         1070 

Active Power (uW)     157       1136           912 

Leakage Power(uW)     19         112           120 

 

Next we describe how the area of RS encoder/decoder in higher Galois fields can 

be estimated based on the results in Table 2.6. Every PE module contains one FSM (finite 

state machine) which is the same for all Galois Fields, 26 multi-bit flip-flop registers, 6 

 8KB page 16KB page 

ECC scheme Number of 

Syndrome 

Calculation Blocks 

Number 

of RS 

codes 

Decoding 

Latency 

(Cycles) 

Number 

of RS 

codes 

Decoding 

Latency 

(Cycles) 

RS(255,247) 5 33 ρψτσ 65 σσχσ 

RS(255,239) 2 33 τττω 65 ψυςω 

RS(127,121) 3 74 σςςω 148 φτπτ 



 

  44 

one-bit flip-flop registers, 6 multi-bit multiplexers, 4 multi-bit Galois field multipliers 

and 2 multi-bit Galois field adders. In higher Galois Field, the complexity of the 

multipliers and adders increases. For instance, for implementing Galois Field multipliers 

by the tree structure in [60], the multiplier in GF(ς) has 36 AND gates and 25 XOR 

gates while the multiplier in GF(ς) has 64 AND gates and 76 XOR gates. This translates 

to an increase in area from 35.5ʈά  ÔÏ φσȢςʈά  and a 2X increase in latency. 

Table 2.7 Comparison of estimated gate counts of RS decoders. 

 Syndrome 

Calculation 

Key-Equation Chien&Forney Total 

Area(ʈÍ) 

RS(63,59)  300 1198+FSM 1360    3323 

RS(127,121) 525*3 1478+FSM 2822    5319 

RS(255,247) 800*5 (1172+FSM)*2+2*8*4 5880    7513 

RS(255,239) 1600*2 (1172+FSM)*3+1*7*4 7600  12317 

 

We estimate the hardware overhead of the different RS decoders in terms of 

number of 2-input XOR gates and also match it with actual area estimates of RS(63,59). 

The estimated gate counts and the total estimated area for the different RS decoders are 

listed in Table 2.7. Area of the FSM in PE is independently synthesized and it is 360 ʈÍ. 

The synthesized area of Key-Equation of RS (63, 59) decoder is 1581 ʈÍ and the 

estimated area of Key-Equation of RS(127,121) decoder is 
ᶻ

σφπ = 1875 

 ʈÍȠ the area of the syndrome calculation block is 
ᶻ

*235= 1234  ʈÍ. Note that the 

area estimates here includes the look up table in syndrome calculation but do not include 

areas of the FIFO in RS encoder, page buffer and other peripherals. 

In our RS decoder, the critical path occurs in the Chien and Forney part as shown 

Table 2.6. Based on the structure of the Galois Field hardware, we estimate that the 



 

  45 

critical path of the RS(127,121) decoder is 1.4 times of that of the RS(63, 59) decoder. 

Similarly, the critical path of the RS(255,247) decoder is 2 times that of the RS(63,59) 

decoder and is estimated at 2.2ns. Thus for 16KB page, 4.4K cycles are needed to 

complete product code RS(255,247) with Hamming (147,138) and the throughput of this 

scheme is about 14Gb/s as shown in the Table 2.10. 

2.7.2 Hamming code Hardware Structure 

Here we describe a Hamming code encoder structure which supports encoding 

codes with different strengths using the same hardware [64]. An important characteristic 

of the Hamming codes is that the parity generator matrix for shorter code (stronger) can 

be derived from the parity generator matrix of the longer code (weaker).  

 

 
 

Figure 2.19.  Parity generation for (39, 32) from (72, 64). 

 

Consider the parity generator matrix of the (72, 64) code illustrated in Figure 2.19.  

It consists of 8 rows (equal to number of parity bits). The first half of this code (column 1 

to 32) except the seventh row can be used to generate the parity matrix of (39, 32) code 

since the seventh row consists of all zeros. Although we need additional circuitry 



 

  46 

compared to single-error-correction-double-error-detection (SECDED) implementation 

which is optimized for a single code, generating codes like this has the ability to adjust 

coding strength with slight increase in circuit area. 

                        

 

Figure 2.20.  Block diagram of encoder for (72, 64) and (39, 32) codes.     

 

The encoder for (72, 64) and (39, 32) based on [64] is illustrated in Figure 2.20.  

For (72, 64), the input bits b1 through b32 are sent to one parity generator and bits b33 

through b64 are sent to the second parity generator. The combiner combines the two sets 

of parity bits and generates parity bits for the (72, 64) code. When higher coding 

capability is required, as in (39, 32), the second parity generator and combiner (shaded 

blocks in Figure 2.19) are disabled and the outputs of the first generator are output. The 

decoder can be implemented using a similar hierarchical structure. Synthesis results of 

Hamming(72,64) and (39,32) encoder/decoder are listed in Table 2.8.  A similar 

procedure is used to derive the architecture of Hamming(147,138) and (72,64). 

 

 

   

 

  

 

   

 

b1   b2   b3                       
b32                

b33  b34  b35                
b64                

p1   p2   p3                      
p8                

pr1   pr2       pr7                

 multiplex
er 

combin
er 



 

  47 

Table 2.8.  Synthesis results of Hamming encoder/decoder. 

       Hamming (72, 64) Hamming (39, 32) 

   Encoder     Decoder Encoder Decoder 

Cell area(ÕÍ ) 314   575 314 575 

Worst case delay(ps) 390 1142 270 640 

Active power(uw) 230   347   93 455 

 

2.7.3 Trade-offs Between Schemes 

Table 2.9 Area, Latency, BER and Redundancy rate of ECC Schemes. Notation: RS1 is 

RS (255, 239), RS2 is RS (127, 121), RS 3 is RS (255, 247); H1 is Hamming (72, 64), 

H2 is Hamming (39, 32) and H3 is Hamming (147, 138). 

 ECC Schemes  Area 

(ʈά ) 

Decoding 

Latency 

(Cycles) 

Encoding 

Latency 

(Cycles) 

BER at  

5*10
-3 

cycles 

Redun.    

Rate 

8 KB A:RS1 12317 4449 4335 χz ρπ 6.2% 

B1:RS2+H1  

7097 

3674 3620 χz ρπ 16.5% 

B2:RS2+H2*2 4118 4064 υz ρπ 24% 

 

16 KB 

C:RS1 12317 8529 8415 χz ρπ  6.2% 

D1:RS3+H1  

9291 

4393 4335 φz ρπ 12.2% 

D2:RS3+H2*2 5413 5355 ρz ρπ 25% 

E1:RS2+H3  

8875 

6849 6795 8 * ρπ 10.5% 

E2:RS2+H1*2 7293 7185 ωz ρπ 15% 

 

Table 2.9 presents the area, latency and redundant rate of candidate product 

schemes and plain RS code. The area and latency estimates are based on the results 

presented in Table 2.7 for RS decoders and Table 2.8 for Hamming decoders. The BER 

results are obtained from Figure 2.15. Regular scheme and its corresponding flexible 

version, such as D1 and D2 (or E1 and E2) have the same area. This is because the same 

hardware is used to implement both schemes. For instance, for D1 and D2, the same 

Hamming decoder hardware is configured to operate as a Hamming (72, 64) decoder for 

D1 and as Hamming (39, 32) for D2. The latency for D1 and D2 are different since it 



 

  48 

requires two decoding passes for the two short columns (in a single column) to be 

processed. 

For 8KB page size, product code with RS(127,121) with one Hamming(72, 64) 

(Scheme B1) has smallest area and the shortest encoding/decoding latency. Product code 

with RS (127,121)+two Hamming(39, 32) (Scheme B2) has the best error correction 

performance and slight higher coding latency compared to Scheme B1. But it has the 

highest redundancy rate due to use of two Hamming codes. Both Scheme B1 and Scheme 

B2 have significantly lower latency and smaller area compared to the plain RS(255, 239) 

(Scheme A). The redundancy rate of Scheme A is the lowest, as expected. While the 

decoding performance of Scheme B1 is not as good as Scheme B2, its redundancy rate is 

a lot lower. For 16KB page size, area of RS (255,247) with one Hamming(72, 64) 

(Scheme D1) and its flexible version RS (255,247) with two Hamming(39, 32) along 

columns (Scheme D2) is much smaller than plain RS(255, 239) (Scheme C). However 

Scheme C has the lowest redundancy rate. 

For the same raw BER, the performance of the flexible schemes is one decade 

better than that of the regular schemes. Alternately, as the raw BER increases with 

increased usage, the flexible schemes enable us to provide the same decoded BER as the 

regular schemes. Unfortunately, these schemes have slightly higher circuit area, latency 

and redundancy rate. For instance, for 8KB page size, Scheme B2 provides decoded BER 

of ρπ  when the raw BER increases from 2.2*ρπ  to 4.0*ρπ . This comes at the 

expense of 8% larger parity storage and 12% longer latency. For 16KB page size, 

Scheme E2 provides decoded BER of ρπ when the raw BER increases from 2.2*ρπ 



 

  49 

to 4.0*ρπȢ This comes at the expense of 4.5% larger parity storage and 7.5% longer 

latency compared to Scheme E1.  

Finally among schemes with comparable performance, lower latency can only be 

achieved at the expense of higher redundancy rate. For instance, while Schemes D1 and 

E1 have comparable BER performance, D1 has lower latency and higher redundancy rate 

compared to E1.  

 

Table 2.10 Related work comparison. 

 

     

Next, Table 2.10 compares the different BCH and RS based schemes with respect 

to area and throughput. Although the technology for the different implementations is not 

the same, in general, the throughput of RS implementations is higher than those of BCH 

implementations. This is because RS codes are implemented in Galois Filed of lower 

order compared to BCH. The exception is the BCH concatenated with TCM in [13] 

which has very high throughput. This is because it parallelizes the BCH-TCM circuitry 

by a factor of 4.  

We can also see from Table 2.10 that compared to other RS implementations, the 

proposed RS+Hamming product code scheme has the smallest area and comparable 

Related work code size t area throughput   tech. 

BCH+TCM[13] 4kB --- 0.15 άά  4Gb/s 65nm 

Sector-pipe BCH [59] 512B 4 0.07 άά  370Mb/s 250nm 

BCH [12] 2kB 5 1.3 άά  288Mb/s 90nm 

Adaptive BCH [11] 512B 9-24 0.8 άά  952Mb/s 130nm 

RS [62] 255B 8 18400 gates 5.1Gb/s 180nm 

RS [60] 255B 8 53200 gates 5.3Gb/s 130nm 

RS3+H1 (this work) 16kB >4 0.02άά  14Gb/s 45nm 



 

  50 

throughput. This is because in our RS decoder implementation, each PE in Key-Equation 

part works in full workload. This reduces the latency of Key-Equation and allows for 

parallelized syndrome calculation, thereby increasing the throughput.  

2.8. Adaptive Refresh Technique 

According to recent work in [22] [23], errors in MLC NAND Flash can be 

classified into retention errors and programming interference (PI) errors.  Retention errors 

are caused by leakage of the electrons trapped in the floating gate and cause the threshold 

voltage to reduce. PI errors result from parasitic capacitance coupling with neighboring 

cells and cause the threshold voltage to increase. An empirical analysis of error patterns 

in 3x-nm MLC Flash memory has been provided in [22], [23]. The key observations are 

that (i) both retention errors and PI increase with the number of P/E cycles; (ii) if the data 

storage time is longer than 1 day, retention errors are dominant, while if the data storage 

time is less than 1 day, PI errors are dominant; (iii) the error distribution of retention 

errors and PI errors have data dependency and location dependency. 

In this section, we utilized the characteristics of retention and PI errors in the 

development of ECC schemes for applications with very different data storage times [65]. 

In both cases, we first apply Gray coding and 2-bit interleaving so that errors in the MSB 

sub-page and LSB sub-page are comparable so that we can use the same ECC unit for 

two subpages. Then we propose an adaptive data refresh strategy to protect the reliability 

of applications with different data update frequencies. 



 

  51 

2.8.1 PI and Retention Error Characteristics 

Test results in [23][24] also show that the retention errors and PI errors are value 

dependent; their flipping probabilities are different for the different logical states. 

Moreover, the probabilities do not change with increasing number of P/E cycles. Table 

2.11 lists the four highest error probabilities for retention and PI errors [24]. We see that 

for retention errors, 00->01 and 01->10 account for 90% of the error events. Similarly for 

PI errors, 11->10 and 10->01 account for 94% of the errors. Notice that while the 

transitions, 00->01 and the 11->10, affect the LSB subpages, the 01->10 transition affects 

both MSB and LSB subpages. So, we propose re-mapping based on Gray code to reduce 

the bit errors in the different subpages. In this case, the 01->10 transition maps to the 01-

>11 transition and only the MSB subpages are affected. 

Table 2.11. Error probabilities of DR errors and PI errors [23]. 

Retention errors 00->01, 
46% 

01->10, 
44% 

01->11, 
5% 

10->11, 
2% 

Other 
3% 

PI errors 11->10, 
70% 

10->01, 
24% 

10->00, 
2.2% 

11->01, 
1.5% 

Other 
1.9% 

 

Due to different probability of error transitions, the error rates of the four sub-

pages are different. The results in [23][24][25] show that odd and even cells have 

different failure rates for DR and PI errors. We see from [25] that the retention error rate 

of odd pages is always higher than that of the corresponding even pages and that the error 

rate of MSB subpage is higher than that of the corresponding LSB subpage. We use the 

results presented in  [25] to assume that the error rate of LSB-odd subpage is 1.45 times 

that of MSB-even subpage. We use this ratio to derive the cell failure rate for even and 



 

  52 

odd pages. Let the cell failure rate of even page due to DR be ὴ, then the cell failure rate 

of odd page is ςȢυϽὴ. Since Gray code changes the mapping of states, it changes the 

sub-page error rates as well. The error rates for each sub-page due to DR error are given 

in Table .  

The cell failure rates of even cell and odd cell are quite different for PI errors. 

Previous research work does not explicitly address the differences between even cell and 

odd cell failure rates for PI errors. This is probably because PI errors were considered less 

important compared to DR errors ï a fact which is true if the data storage time is long. 

However, PI errors cannot be ignored when the retention time is short due to application 

characteristics or use of data refresh. 

In [25], the simulated raw BER for even and odd cell shows that the ratio between 

even cell and odd cell BER varied from 4 to 50. We assume the error ratio in even cell is 

óÁô times higher than that of odd cell, and that the error failure rate of odd cell is ὴ. Then 

the error rates of four sub-pages are: πȢςχχϽÁÐ for MSB-even, πȢχτρϽÁÐ for LSB-

even, πȢςχχϽÐ  for MSB-odd and πȢχτρϽÐ  for LSB-odd. The sub-page error rates 

before and after Gray coding is given in Table 2.12. 

From Table 2.11 we see that Gray coding helps reduce the error rates for both DR 

and PI errors in the LSB-even and LSB-odd sub-pages. This leads to almost equal error 

rates for MSB-even and LSB-even subpages as well as MSB-odd and LSB-odd subpages. 

This has two implications. First, the ECC can be of lower strength than before. Second, 

the ECC unit for MSB and LSB subpages can be the same. 

 



 

  53 

Table 2.12. Sub-page error rate before and after Gray coding 

 MSB-even LSB-even MSB-odd LSB-odd 

Retention errors πȢτωϽÐ πȢωςϽÐ ρȢςςυϽÐ ςȢσϽÐ 

Retention errors 
(After Gray coding) 

πȢτωϽÐ πȢυρϽÐ ρȢςςυϽÐ ρȢςχυϽÐ 

PI errors (Á is 50) ρσȢψυϽÐ τχȢςϽÐ πȢςχχϽÐ πȢωττϽÐ 

PI errors 
(After Gray coding) 

ρσȢψυϽÐ σχȢπυϽÐ πȢςχχϽÐ πȢχτρϽÐ 

 

2.8.2 Candidate ECC Schemes 

A. Error Rate Analysis of the Four Sub-pages 

The error rate of NAND Flash memories depend on the number of P/E cycles. 

The lifetime of NAND Flash storage systems is at least ρπ P/E cycles [2] [13] [24], so 

we consider the lifetime to be  υϽρπ P/E cycles.  For this scenario the average bit error 

rate of PI error  is ςϽρπ, 1 day retention error  is also ςϽρπ , 3 day retention error is 

ρȢψϽρπ , 3 week retention error is ςϽρπ, 3 month retention error is ςϽρπ and 3 

year retention error is ρȢυϽρπ [23][24]. The average error rates for DR and PI errors 

are used to compute ὴ and ὴ. For instance, the 1 day retention error rate of ςϽρπ is 

equal to the summation of error rates of four sub-pages (see Table 2.12). Thus, ςϽ

ρπ  πȢτωϽÐ πȢωςϽÐ ρȢςςυϽÐ ςȢσϽÐ and Ð τȢπυϽρπ . We list the 

error rates for the four sub-pages for different DR times and PI cases after Gray coding 

for υϽρπ P/E cycles in Table 2.1. 

 



 

  54 

Table 2.13. Sub-page error rate for different DR times and different PI ratios (ὥ) at 

υϽρπ P/E cycles. 

 

υϽρπ P/E cycles Raw BER BER 

MSB-even LSB-even MSB-odd LSB-odd 

PI (Á is 4) ςȢππ% φ τȢσυ% χ ρȢρχ% φ ρȢπτ% χ ςȢωρ% χ 
PI (Á is 8) ςȢππ% φ τȢχφ% χ ρȢςχ% φ φȢψπ% ψ ρȢψς% χ 

PI (Á is 50) ςȢππ% φ υȢστ% χ ρȢτς% φ ρȢππ% ψ ςȢψπ% ψ 
DR 1 Day ςȢππ% φ ςȢψπ% χ ςȢωρ% χ χȢππ% χ χȢςω% χ 
DR 2 Day χȢωρ% φ ρȢρρ% φ ρȢυσ% φ ςȢχφ% φ ςȢψψ% φ 
DR 3 Day ρȢψπ% υ ςȢυς% φ ςȢφς% φ φȢσπ% φ φȢυυ% φ 
DR 7 Day υȢπφ% υ χȢπψ% φ χȢσχ% φ ρȢχχ% υ ρȢψτ% υ 
DR 3 Week ςȢππ% τ ςȢππ% υ ςȢωρ% υ χȢππ% υ χȢςψ% υ 

 

B. Choosing Appropriate ECC Code 

Our goal is to find an ECC code that achieves an uncorrectable bit error rate 

(UBER) of ρπ  for every sub-page. Such an UBER is a reasonable target value for 

many storage systems [3] [27]. We propose to use BCH code to reach this goal since 

NAND Flash errors, especially after bit-level interleaving, are random SEUs. For small 

DR error, such as when DR error is 1 day, the BER of even page is ςȢψϽρπ   and BCH 

(532,512,t=2) code, is sufficient. If DR is larger, the error rates are higher and stronger 

BCH codes have to be used. Figure 2.21 plots UBER vs. raw BER obtained after Gray 

coding for several BCH codes with 512 information bits. This figure helps us determine 

the BCH code that is required for the different sub-pages. For instance, if DR is 3 days, 

then the MSB-even subpage has a BER of ςȢυςϽρπ and a t = 3 BCH code is sufficient. 

If the DR error increases to 3 weeks then the MSB-even subpage BER is as high as 

ςϽρπ and a t = 5 BCH code is required to achieve UBER of ρπ . 



 

  55 

 

Figure 2.21. BCH codes with different error correction capabilities for 512 information 

bits 

C. Adaptive Refresh Technique 

To eliminate retention errors in NAND Flash memory, remapping and in-place 

reprogramming based refresh techniques have been proposed in [23]. In remapping based 

refresh, the data of a whole block is READ out, error corrected (if necessary) page by 

page and written into another empty block. The original block is erased after remapping 

and marked as empty. In in-place reprogramming, on the other hand, the decoded data is 

compared with data READ out from memory, and in case of errors, additional 

programming operations are applied in place to correct the errors. In-place 

reprogramming refresh is preferred in [24] since remapping based refresh increases the 

number of erase operations and thus reduces memory lifetime. However, in-place 

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

Raw Bit Error Rate

U
n
c
o
rr

e
c
ta

b
le

 B
it
 E

rr
o
r 

R
a
te

P/E cycle is 5*104

 

 

t=2

t=3

t=4

t=5

t=6



 

  56 

reprogramming has its own problems. It cannot correct PI errors and instead introduces 

more PI errors due to additional programming operations.  

In this work, we propose to use both these techniques but do remapping based 

refresh only during regular data update. In regular data update, data are copied from 

current block to another block followed by erase of current block. Remapping based 

refresh when done along with data update just adds another layer of ECC decoding and 

encoding, which has minimal effect on Flash memory performance and energy. The 

choice of whether we use in-place reprogramming or remapping is based on the access 

frequency of the applications. Some applications have high access frequencies. For 

instance, file benchmarks Iozone and postmark  have 20 and 5.5 P/E cycles in one block 

per day; others have low access frequencies such as trace web search which is 0.0005 P/E 

cycles per day. 

For applications with high P/E frequency to memory blocks, we propose to use 

remapping based refresh. It has a very small overhead since the latency and energy of 

programming operation in NAND Flash memories are much larger than that of ECC unit. 

This technique does not increase the number of erase operations compared to regular data 

update and thus does not introduce more PI errors due to refresh. For applications with 

low P/E frequency, remapping based refresh can not be combined with data update. As a 

result, every remapping introduces additional erase operation and has higher overhead. 

So we propose to use in-place reprogramming in such cases. While this does increase 

BER of PI errors, it has minimal impact on total BER because retention errors, which can 

be corrected, are dominant for this scenario. 



 

  57 

Next, we discuss the effect of refresh frequency for both scenarios. When P/E 

frequency per block is more than one per day, PI errors are dominant and the net BER is 

determined by the PI errors and can not be reduced even if the refresh frequency is higher 

than once per day. In that case we propose to use remapping based refresh with regular 

data update. When P/E frequency per block is lower than once per day, we propose to use 

in-place reprogramming based refresh as long as the refresh frequency is higher than the 

P/E frequency of the application. To guarantee that all blocks have been refreshed at a 

predetermined frequency 1/Ŭ, we can keep the access record in system files and refresh 

blocks that have had no P/E operations within Ŭ days. The proposed adaptive refresh 

technique is shown in Figure 2.22, and the effect of different refresh frequencies for 

different applications is given in Section 2.8.3.  

P/E cycles/day >1

Application

Remapping 
In-place

reprogramming

Yes

No

Refreshing 

interval Ŭ 

control

Ŭ =1day
Adaptive 

interval Ŭ

 

Figure 2.22.  Flowchart of adaptive refresh technique. 

 

Note that, for applications with P/E frequency lower than 1 per day, the refresh 

frequency is higher than the P/E frequency. In this case, data storage time is equal to 



 

  58 

refresh interval since data are refreshed before the next P/E operation. Table 2.14 lists the 

BCH codes that can be used for the different subpages for different refresh intervals. 

These codes are obtained from the decoding performance curves in Figure  and the BER 

of retention errors listed in Table 2.1. For instance, if the refresh interval is 2 days, we 

can use BCH (542, 512, t=3) code for both the even and odd pages.  

We use BCH codes with error correction capability t=2 for all the subpages when 

refresh interval is 1 day. This is because for applications with high P/E frequency, high 

decoding speed is preferred and it can be achieved by applying plain decoding algorithm 

for t=2 [26][27]. Since MSB-odd and LSB-odd subpages have higher error rates, we need 

a stronger BCH code. So we use four BCH(144,128,t=2) codes to achieve the desired 

error correction performance. 

Table 2.14.  ECC schemes to achieve UBER=10
-15

 for different refresh intervals for 

different bpages. 

 
Refresh Interval Even Page (MSB,LSB) Odd Page(MSB,LSB) 

1day BCH(532,512,t=2) 4BCH(144,128,t=2) 

2days BCH(542,512,t=3) BCH(542,512,t=3) 

3days BCH(542,512,t=3) BCH(552,512,t=4) 

1week BCH(552,512,t=4) BCH(562,512,t=5) 

3weeks BCH(562,512,t=5) BCH(572,512,t=6) 

 

2.8.2. Evaluation of Adaptive Refresh Techniques 

A. Hardware Implementation 

The ECC units listed in Table 2.14 have been synthesized in 45nm technology 

using Nangate cell library [29] and Synopsys Design Compiler [30]. The BCH decoders 

are pipelined versions of the simplified inverse-free Berlekamp-Massey (SiBM) 



 

  59 

algorithm. The 2t-folded SiBM architecture [31] is used to minimize the circuit overhead 

of Key-equation solver at the expense of increase in latency. A parallel factor of 8 is used 

for syndrome calculation and Chien search. The decoding latency, energy and 

redundancy rates of the different ECC schemes presented in Table 2.14 are given in 

Table 2.15. For page size of 4KB page, each sub-page is 1KB and so there are 2 ECC 

units per subpage working on 512 information bits in parallel.  

Table 2.15. Decoding latency and redundancy rate of ECC schemes. Results are given as 

decoding latency (ns)/energy (pJ)/redundancy rate. Critical path is 0.59ns for 

BCH(144,128) and 0.65ns for  BCH(532,512),  BCH(542,512),  BCH(552,512) and 

BCH(562,512,t=5). 

 

 Even Page Odd Page 

Refresh   

Interval 

Latency 

(ns) 

Energy 

(pJ) 

Redun. rate Latency 

(ns) 

Energy 

(pJ) 

Redun. 

rate 

1day 50.7 122.4 3.9% 23.6 296 12.5% 

2days 89.1 169.6 5.8% 89.1 169.6 5.8% 

3days 89.1 169.6 5.8% 94.1 225.2 7.8% 

1week 94.1 225.2 7.8% 100.0 292.4 9.8% 

3weeks 100.0 292.4 9.8% 107.2 380.0 11.7% 
 

Table 2.1 lists the energy and latency numbers of NAND Flash memory using 

measured results of several commercial chips products [33][34]. While the value of 

latency and energy varies among different manufacturers and technologies, we picked the 

average values for a 4KB page NAND Flash memory in 45nm technology. Note that the 

energy values of the ECC unit shown in Table 2.15 are significantly less than the Flash 

energy values shown in Table 2.1.  Thus the memory energy is only affected by the 

additional storage that is required by the ECC code.    

 



 

  60 

Table 2.16. Latency and energy of 4KB page NAND Flash in 45nm Technology. 

 Programming READ Erase 

Latency(us) 520 35 2050 

Energy(uJ) 65 2.1 30 
 

B. System-level Evaluation 

B.1 Applications with P/E Frequency Higher than Once per Day 

For applications with P/E frequency higher than once per day, we set the refresh 

interval to be once per day. In that case BCH(532,512,t=2) is used for even page and 

BCH(144,128,t=2) is used for odd page. We use shorter BCH code with the same t value 

in odd page for higher error correction capability with fast decoding. From Table 2.15 we 

see that the energy and latency overhead of the ECC unit is quite low and is significantly 

less than those of NAND Flash memory. Thus, the only overhead is the additional energy 

due to parity storage, which is 3.9% and 12.5% for even and odd pages, respectively.  

B2. Applications with P/E Frequency Less than Once per Day 

For applications with P/E frequency less than once per day, we analyze the impact 

of different refresh frequencies on memory energy and ECC decoding latency.  We 

consider two types of applications that are borrowed from [25]. Application A has P/E 

frequency of 1/7 day and programming ratio (defined as number of WRITE/ total number 

of READs and WRITEs) of 17%. Application B has P/E frequency of 1/200 days and 

programming ratio of 20%.  

As refresh interval increases, additional energy due to refresh, READ, ECC 

decoding and re-programming decreases. However, since the BER of retention errors 



 

  61 

increases, to achieve the same UBER=10
-15

 at 5*10
4
 P/E cycles, the required error 

correction capability of ECC code increases. The effect of increasing refresh interval for 

Application A is shown in Figure 2.23. Normalized additional energy is the ratio of 

Eadditional over Ebaseline, where Ebaseline is the energy without refresh and ECC and is 

calculated as Ebaseline = EREAD*NREAD + Eprogramming*Nprogramming where NREAD and 

Nprogramming are the number of READ and WRITE operations. Let Eadditional be the 

additional energy resulting from refresh, Erefresh, and accesses to a large memory given by 

Eparity=Ebaseline * redundancy rate.  Ignoring the energy of ECC unit, Erefresh can be 

represented as Erefresh å (EREAD + Eprogramming)*(f refresh/fP/E), where EREAD and Eprogramming are 

the energy of READ and WRITE and frefresh/fP/E is the ratio of refresh frequency over P/E 

frequency of the application.

 

Figure 2.23. Effect of different refresh intervals for Application A. Additional energy is 

normalized to the baseline energy that does not include refresh and ECC.  

1day 2days 3days
2

3

4

5

6

7

8

Refreshing Interval

 Additional  energy of even page

 Additional  energy of odd page

 Decoding latency of even page

 Decoding latency of odd page

N
o

rm
a

liz
e

d
 A

d
d
it
io

n
a

l 
E

n
e
rg

y

10

20

30

40

50

60

70

80

90

100

 E
C

C
 D

e
c
o
d

in
g
 L

a
te

n
c
y
(n

s
)



 

  62 

 

Table 2.17. Additional energy distribution of refresh technique for different refresh 

intervals. 

Additional 

energy due to 

1 day 2 days 3 days 

Even page Odd page Even page Odd page Even page Odd page 

READ 1.3% 1.3% 1.3% 1.3% 1.3% 1.2% 

WRITE 98.0% 96.5% 96.3% 96.3% 94.2% 92.8% 

Parity storage 0.7% 2.2% 2.4% 2.4% 4.5% 6.0% 
 

As shown in 2.23, as refresh interval increases from 1 day to 3 days for 

Application A, normalized additional energy of both even and odd pages decrease and 

they have almost identical values. The same trend is not true for decoding latency. As 

refresh interval increases from 1 day to 3 days, for even pages, decoding latency 

increases from 50.7ns to 89.1ns while it increases from 23.6ns to 94.1ns for odd pages. 

The difference in decoding latency of the two pages is due to different ECC schemes 

being used for the two pages. Figure 2.23 also shows that for both even and odd pages, 

refresh interval of 3 days is preferred for lowering energy while refresh interval of 1 day 

is preferred for achieving low decoding latency and redundancy rate. 

We also analyze additional READ energy, WRITE energy and parity storage 

energy due to refresh for Application A (Table 2.1). We find that as refresh interval 

increases, READ energy due to refresh is constant at around 1.3%. However, the WRITE 

energy due to refresh decreases from 98% to 92.8% while the parity storage energy 

increases from 0.7% to 6.0%. This is because long refresh interval results in higher BER 

due to retention errors and therefore requires high error correction capability. This results 

in not only long decoding latency but also more parity storage. The increase in parity 



 

  63 

storage causes an increase in energy consumption of all the operations in NAND Flash 

memory.   

Furthermore, for the case when memory energy and ECC decoding latency have 

equal importance, we compare normalized energy and latency product for three refresh 

intervals as shown in Figure 2.24.  For even page, refresh interval of 3 days is the best 

choice, since the energy-latencyïproduct keeps decreasing as refresh interval increases. 

For odd page, the energy-latencyïproduct of refresh interval of 1day is lower than that of 

3 days. This is because refresh interval of 1 day results in low BER and enables us to use 

BCH code with t=2. This specific code can be implemented with a fast decoding 

algorithm and the low decoding latency offsets the high energy resulting from short 

refresh interval.  

Similar analysis has been done for Application B. As refresh interval increases, 

decoding latency increases while the additional energy decreases. Since the P/E 

frequency of Application B is lower than that of Application A, use of the same refresh 

interval results in more normalized additional energy for Application B. Figure  shows 

the energy-latencyïproduct as a function of refresh interval for Application B. In this 

case, we see that for both even and odd pages, the longest refresh interval achieves the 

lowest energy-latencyïproduct.   



 

  64 

 

Figure 2.24. Normalized energy-ECC decoding latency product of Application A for 

different refresh intervals. 

 

Figure 2.25. Normalized energy-ECC decoding latency product of Application B for 

different refresh intervals. 

2.9. Conclusion  

In this chapter, we first analyze the source of errors in NAND Flash memories 

and find that the errors are caused by threshold voltage shift due to increasing number of 

1day 2days 3days

150

200

250

300

350

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 &

 E
C

C
 d

e
c
o

d
in

g
L

a
te

n
c
y
 P

ro
d

u
c
t

Refresh Interval

 Even Page

 Odd Page

1day 2days 3days 1week 3weeks
0

5000

10000

15000

20000

25000

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 &

 E
C

C
 d

e
c
o

d
in

g
L

a
te

n
c
y
 P

ro
d

u
c
t

Refresh Interval

 Even Page

 Odd Page



 

  65 

P/E cycles. We also find that increased variation in threshold voltage in scaled 

technologies causes an increase in the error rates. We build a quantitative error model to 

estimate the threshold voltage shift and capture these effects. Next, we propose product 

code schemes to handle high error correction capability of NAND Flash memories with 

reduced hardware overhead. The proposed schemes use RS codes along rows and 

Hamming codes along columns and can handle both random and MBU errors. We show 

that for 8KB and 16KB page sized memories, regular product schemes achieve one 

decade lower BER when raw BER ranges from ρπ  to ρπ  compared to plain RS 

codes or BCH code with similar code length. The proposed product code schemes also 

have lower hardware and latency than plain RS codes. To support the higher error 

correction capability needed when MLC NAND Flash memories get close to the rated 

lifetime, we propose a flexible scheme where a single Hamming code along the columns 

is replaced by two shortened but stronger Hamming codes. For instance, for 8KB 

memory, we can maintain the BER of ρπ  even when the raw BER increases from 

2.2* ρπ  to 4.0*  ρπ  by moving from RS(127,121)+Hamming(72,64) to 

RS(127,121)+two Hamming(39,32).  Unfortunately, this results in 8% larger parity 

storage area and 12% longer latency that that of the original scheme. 

We also utilize the error characteristics of retention and PI errors provided 

in [22],[23] to develop low cost error correction techniques that use a combination of data 

refresh policies and BCH based ECC schemes to achieve low UBER. First, we use Gray 

coding and bit-level interleaving to reduce the error rates. We find that this results in 

comparable error rates for MSB and LSB subpages of odd and even pages and enables 



 

  66 

the subpages to share the same ECC unit resulting in low hardware overhead. Next we 

use different data refresh policies to reduce the retention errors. For applications with P/E 

frequency higher than once per day, we propose to use remapping based refresh during 

regular data updates since it has very little effect of memory energy and ECC decoding 

latency. For applications with P/E frequency lower than once per day, we use in-place 

reprogramming based refresh where the refresh interval is chosen based on the system 

requirements.  For instance, to achieve UBER=10-15 at 50K P/E cycles, if the P/E 

frequency is once per week, we use BCH (572,512) with refresh interval of  3 day to 

achieve the lowest memory energy, and BCH (532,512) with refresh interval of  1 day to 

achieve the lowest ECC decoding latency.  



 

  67 

CHAPTER 3 

PHASE-CHANGE RAM MEMORY 

3.1. Introduction 

Phase change RAM (PRAM) is a promising memory technology because of its 

fast READ access time, high storage density and very low standby power. Multi-level 

Cell (MLC) PRAM, which has been introduced to further improve the storage density, 

has lower reliability due to closer resistance values between adjacent states. Errors in 

MLC PRAM can be classified into two classes: soft errors and hard errors. Soft errors are 

caused by structure relaxation (SR) property of the phase change material, resulting in 

increasing resistivity of amorphous phase over time. Hard errors are caused by Sb 

contamination at the heating contact due to repeated high current for programming 

RESET state. While soft errors increase as data storage time (DST) increases, hard errors 

result in shorter memory lifetime because they increase as the number of programming 

cycles (NPC) increases.  

In this chapter, we analyze the error characteristics of these two types of errors 

and propose comprehensive solutions to correct both of them. We propose a multi-tiered 

approach with small overhead that spans architecture, circuit and device level so that a 

low cost ECC scheme can be used to achieve high reliability. At the architecture level, 

we use a combination of Gray code encoding and 2-bit interleaving to partition the errors 

and subblock flipping to reduce the number of hard errors. At the circuit level, we tune 

threshold resistance to minimize the BER (due to soft errors and hard errors). At the 

device level, we tune programming current profile to achieve low BER at the expense of 



 

  68 

high programming energy and long latency. The multi-tiered approach enables us to use a 

simple BCH based ECC to achieve BFR=10
-8

. We also study PRAM-DRAM hybrid 

architecture to hide the programming latency of PRAM and enhance the memory lifetime. 

We analyze the tradeoffs between system metrics, such as energy, IPC and lifetime by 

running SPEC2006 and DaCapo benchmarks on GEM5. This work was presented in 

[34][35][36]. 

The rest of this chapter is organized as follows. Section 3.2 describes the 

operation of SLC and MLC PRAM cell. The causes of soft errors and hard errors are 

given in Section 3.3. Section 3.4 summarizes related work. Architecture-level and circuit-

level reliability control techniques are demonstrated in Section 3.5 and Section 3.6. 

Section 3.7 describes device-level reliability control by current profile tuning. Section 3.8 

summarizes two multi-level error correction approaches and analyzes their performance, 

system energy and IPC. Section 3.9 concludes the chapter. 

3.2. Background 

 

In this section we describe the basic structure of the PRAM cell including 

programming of SLC PRAM (section 3.2.1), the device model of PRAM based on its 

physical characteristics (section 3.2.2), and programming MLC PRAM (section 3.2.3). 

3.2.1 PRAM Basics 

 



 

  69 

The structure of a PRAM cell is shown in Figure 3.1. It consists of a standard 

NMOS transistor and a phase change device. The phase change device is built with a 

chalcogenide based material, usually Ge2Sb2Te5 (GST), that is put between the top 

electrode and a metal heater which is connected to the bottom electrode. GST switches 

between a crystalline phase (low resistance) and an amorphous phase (high resistance) 

with the application of heat; the default phase of this material is crystalline. The region 

under transition is referred to as programmable region. The shape of the programmable 

region is usually of mushroom shape due to the current crowding effect at the heater to 

phase change material contact [26].   

Unlike conventional SRAM and DRAM technologies that use electrical charge to 

store data, in PRAM, the logical value of data stored in the device corresponds to the 

resistance of the phase change material in the device. In a SLC PRAM, there are two 

states, RESET state (logical ô0ô) corresponding to the high resistance amorphous phase; 

and SET state (logical ó1ô) corresponding to the low resistance crystalline phase.   

 

Phase change

material

Top electrode

Bottom electrode

Heater
Insulator

Programmable

Region

 BL 

WL 

SL 

GST 

 
 

 

Figure 3.1.  PRAM cell structure [26]. 

 



 

  70 

During WRITE operation of SLC PRAM, a voltage is applied to the word line 

(WL), and the current driver transistor generates the current that passes between the top 

and bottom electrodes to heat the heater causing a change in the phase of the GST 

material.  During WRITE-0 or RESET operation, a large current is applied between top 

and bottom electrodes (see Figure 3.2).  This heats the programmable region over its 

melting point, which when followed by a rapid quench, turns this region into an 

amorphous phase. Figure 3.3(a) shows the programmable region during amorphization. 

Here d is the thickness of GST, r is the radius of the programmable region and CW is the 

width of the bottom contact between GST and the heater.  During WRITE-1 or SET 

operation, a lower current pulse is applied for a longer period of time (see Figure 3.2) so 

that the programmable region is at a temperature that is slightly higher than the 

crystallization transition temperature. A crystalline volume with radius rô starts growing 

at the bottom of the programmable region as shown in Figure 3.3(b).  At the end of this 

process, the entire programmable region is converted back to the crystalline phase.  

In READ operation, a low voltage is applied between the top and bottom 

electrodes to sense the device resistance. The READ voltage is set to be sufficiently high 

to provide a current that can be sensed by a sense amplifier but low enough to avoid 

WRITE disturbance [26].      



 

  71 

RESET 

SET 

Read

Tmelt

Tcrys

Troom

Time

Ireset

Iset

T
e

m
p

e
ra

tu
re

Time

C
u

rr
e

n
t

 

Figure 3.2. PRAM cells are programmed and READ by applying electrical pulses with 

different characteristics. 

r

CW

d

Bottom Electrode

Heater

Top Electrode

              

Top Electrode

d
r'

CW

Bottom Electrode  

(a)                                         (b) 

Figure 3.3.  Phase change in the programming region; a) amorphization, b) crystallization.  

 

3.2.2 Device Model  

To simulate the programming process of a PRAM cell, an Hspice model has been 

developed as shown in Figure 3.4.  While in our earlier model [35], the cell resistance 

was only determined by the supply voltage or current, in the current model [37], the cell 

resistance is a function of the input current profile, geometry of the programming region, 

and the phase of the phase change material in the programmable region (amorphous or 

crystalline). According to this model [37], the equivalent circuit of PRAM consists of 

four parts: input energy conversion, temperature transition, phase change and geometry 



 

  72 

as shown in Figure 3.4. Here RT and CT represent the thermal resistance and capacitance 

of GST structure, RWRITE is the electrical resistance of GST during programming.  The 

switch connected to Rm or Rg(T) in the model indicates the phase changing direction of 

GST material (m stands for melting which happens before amorphization and g stands for 

crystallization) and Cstate represents the state of the PRAM cell. The input energy changes 

the temperature of the GST material based on RT and CT. The temperature is used to 

decide on the switch position: when the temperature is higher than the melting 

temperature, the switch flips up and Cstate is charged by the voltage source, indicating the 

melting of GST. When the temperature is between the melting and annealing temperature, 

the switch flips down and Cstate is discharged through Rg, indicating the annealing of GST 

resulting in the crystalline phase. The geometry block describes the cross-sectional shape 

(mushroom) of the programmable region, the dimensions of which are used to update the 

electrical and thermal parameters simultaneously. 

The equations for RE, RT and CT are given by [37] 

Ὑ ”               (Eq. 3.1) 

Ὑ                 (Eq. 3.2) 

ὅ ὧ‌ὅὡὨȾς        (Eq. 3.3) 

where  Ὑ  is the electrical resistance, ” is the electrical resistivity, ὑ  is the thermal 

conductivity and ὧ is the heat coefficient. The values of ”, ὑ and ὧ are borrowed from 

[66][67] and listed in Table 3.1. Note that the current through the top and bottom 

electrodes depends on both the width of top electrode, ύȟ and contact width, CW. When 



 

  73 

ύ is larger than CW, the effect of  ύ is approximately modeled by a coefficient Ŭ 

calculated as Ŭ = 0.79*d/CW+1.08 = 2.46 by data fitting based on our simulation results 

 

 

 

 

 

Figure 3.4.  The equivalent circuit model for SPICE simulation [37]. 

 

 

Table 3.1. Material properties in PRAM device model. 

Material 

Electrical 

resistivity 

ɟ (ɋĀcm) 

Thermal 

conductivity ə 

(WĀm
-1
ĀK

-1
) 

Specific  

Heat c0 

(JĀcm
-3
ĀK

-1
) 

Crystalline GST 0.0361 0.5 1.25 

Amorphous GST 33.33 0.2 1.25 

 

3.2.3 MLC PRAM 

Since the resistance between the amorphous and crystalline phases can exceed 2-3 

orders of magnitude [27], multiple logical states corresponding to different resistance 

values can be accommodated. For instance, 4 states can be accommodated, in a 2-bit 

multi-level cell (MLC) PRAM. The 4 states of such a cell are ó00ô for full amorphous 

state, ó11ô for full crystalline state, and ó01ô and ó10ô for the two intermediate states.  

MLC PRAM can be programmed by shaping the input current to the cell. The 

finite state machine (FSM) for modeling WRITE in a 2-bit MLC is shown in Figure 3.5(a) 

[68]. To go to ó11ô state from any other state, a SET pulse of low amplitude and long 

RT CT

T

I
2
Rwrite

Rm 

Rg(T)
Cstate

Input Energy 

Conversion

Phase 

Change
Temperature

Transition

Geometry/Structure/Material

Iteration



 

  74 

width is applied. However, to go to ó00ô state from any state, it has to first transition to 

ó11ô state to avoid over programming. To go to ó01ô or ó10ô state, it first goes to ó00ô state 

and then to the final state after application of several short pulses. After each pulse, the 

READ and verify method is applied to check whether the correct resistance value has 

been reached. Figure 3.5(b) shows the resistance values corresponding to multiple 

programming steps that are required to go from ó00ô state to ó10ô state. During t1, the 

resistance value in the memory cell is READ out and compared with the resistance of the 

final state; if it is higher than the final state resistance, another current pulse of duration t2 

is applied to further lower the resistance.  In an 8-step programming strategy, 8 current 

pulses are needed to reach the resistance of state ó10ô from state ó00ô. In our setup, each 

current pulse is of width 34.8ns and amplitude 124.8uA and the READ and verify latency 

is 17.32ns. The current pulse used in the transition from state ô00ô to state ó11ô is of width 

100ns and amplitude 134uA; the current pulse used in the transition from state ô11ô to 

state ó00ô is of width 60ns and amplitude 194uA. The latency and energy of different 

interstate transitions are listed in Table 3.2.   Note that the programming latency in 2bit 

MLC PRAM is determined by the longest latency, which is the latency to go from 

state ô01ô state ó10ô. This is the sum of latencies of reaching state ó11ô, followed by state 

ó00ô, followed by several READ and verify steps to stateô10ô.  

01

10

00 11

0 2 4 6 8 10 12 14
10k

100k

1M

R
e
s
is

ta
n
c
e
(W

)

Number of pulses

 

 

t1 t2

RC´t

t

t1: read and verify latency

t2: programming pulse width

 



 

  75 

                                                           (a)                                                    (b) 

Figure 3.5. (a) Finite state machine of MLC PRAM. (b) Multiple programming steps to 

move from state ó00ô to state ó10ô. 

 

Table 3.2.  Single cell latency and energy of interstate transitions corresponding to an 8 

step programming strategy. 

 Latency(ns)/energy(pJ) 

00 01 10 11 

00  324.8/17.4 432/23.2 102/13.4 

01 167/25.04  599/48.24 102/13.4 

10 167/25.04 491.8/42.44  102/13.4 

11 65/11.64 389.8/29.04 497/34.84  

 

3.3. MLC PRAM Error Model 

As described in Section 3.2, the logical value stored in PRAM is determined by 

the resistance of the phase change material in the memory cell. Assuming there is no 

variation in the phase change material characteristic and there is no sense amplifier 

mismatch, the primary cause of errors in PRAM is due to overlap of the resistance 

distributions of different logical states. In this section, we analyze the causes of 

overlapping resistance distributions (section 3.3.1), and present the error model for soft 

and hard errors qualitatively and quantitatively (section 3.3.2). 

3.3.1 Resistance Distribution 

A. Background 

The resistance distribution of a 2bit MLC PRAM is shown in Figure 3.6(a).  We 

see that the resistance distribution of the intermediate states (state ô01ô and state ô10ô) is 

not symmetrical; there is a steep slope in the high resistance side, while the low resistance 

side has a long tail. This is because the READ and verify step checks the resistance after 



 

  76 

every programming step and additional current pulses are required if the resistance is 

higher than a required value. 

The resistance distributions of all the states shift from the initial position due to 

the change in the material characteristics such as structure relaxation or re-crystallization 

[69][70]. There are three threshold resistances Rth(11,10), Rth(10,01), and Rth(01,00)  to identify 

the boundaries between the four states. A memory failure occurs when the resistance 

distribution of one state crosses the threshold resistance; the error rate is proportional to 

the extent of overlap. Figure 3.6(b) shows failure caused by resistance distribution of ó01ô 

crossing Rth(01,00). 

00011011

N
u

m
b

e
r 

o
f 
c
e

lls

N
u

m
b

e
r 

o
f 
c
e

lls

Failure

Increasing Resistance

11 10 01 00

Increasing Resistance

 

                (a)                                                                         (b) 

Figure 3.6. Resistance distribution of 4 states in 2bit MLC PRAM. (a) Distribution in 

nominal mode. (b) An example of failure  caused by the ó01ô resistance shift. 

B. Distribution Model 

PRAM cell resistance is determined by the programming strategy and current 

profile. Earlier we have shown that the current variation is mainly determined by the 

variation of CW of the programming region, as well as the variation of Vth of the current 

driver transistor [37]. In this study, we also consider the thickness of GST material, d.  

We did Monte-Carlo simulations in Hspice along with the variation parameters given in 



 

  77 

Table 3.3 to obtain the initial resistance distributions of four logical states of 2bit MLC 

PRAM. 

 

 

 

 

 

 

           Table 3.3.  Parameter values used in Hspice simulation 

 

 

Figure 3.7 shows the resistance distributions of states ó00ô and ô01ô based on 

10,000 point Monte-Carlo simulation runs. We see that the resistance distribution curve 

of state ô00ô has a long tail. Consequently, Gaussian distribution [33][35][36] should no 

longer be used to model this. We propose use of Rayleigh or Weibull distribution but find 

that neither distribution can fit the long tail effect accurately.  Since we are interested in 

calculating the error rate which is proportional to the overlapping area of two resistance 

distributions, we calculate CDF (cumulative distribution function) and use curve fitting to 

 Parameter 
Value 

(ɛÑů) 

PRAM 

CW 28 nm ±2% 

d 49 nm ±2% 

RSET 29 kɋ 

RRESET 2.3 Mɋ 

RWRITE 1 kɋ 

CMOS 

Vdd 1.0 V 

Vth 494mV ±45mV 

Length 28 nm 



 

  78 

model the low resistance part.  We used OriginPro8 [90] for the long tail part of the CDF 

curves of stateô00ô and obtained the function 

ὅὈὊ                (Eq. 3.4) 

where the s-logistic function has values a=650.45532, xc =6.64532 and k=1.11289. 

1.0M 1.5M 2.0M 2.5M
0

10

20

30

 

 

C
o
u
n
t

Resistance of state '00' (W)   

Figure 3.7.  Resistance distribution of (a) state ó00ô (b) state ó01ô using a 10-step 

programming strategy. 

 

For the intermediate states that are programmed by READ and verify, every 

current pulse introduces more variations into the resistance distribution. Figure 3.7(b) 

shows that the resistance distribution of state ô01ô is even less regular than that of 

state ô00ô.  We compute the CDF of resistance distribution curves and do curve fitting for 

both low and high resistance edges with s-logistic function. Table 3.4 provides the fitting 

parameters corresponding to three programming strategies (10-step, 8-step, 6-step) for 

both ó01ô and ó10ô states. Here ñLò and ñHò indicate the parameters in the low resistance 

and high resistance sides, respectively. We consider only H edge for state ô10ô,  and L 

and H edges for stateô01ô since these are the only edges that affect the error rates as will 

be described in Section 3.3.2.  

320k 360k 400k 440k 480k
0

5

10

15

20

25

30

C
o
u
n
t

Resistance of state '01' (W)



 

  79 

 

 

 

 

 

Table 3.4  Parameters of s-logistic fitting function for CDFs of  R01 and R10. 

 

 state Side a k xc 

10step 01 L 0.28522 2.81048 -1.18992 

H 0.52051 -3.06636 0.04945 

10 H 0.34781 -1.45712 -1.12473 

8step 01 L 0.23547 1.47895 -0.78534 

H 0.47859 -0.5789 0.03451 

10 H 0.17842 -1.12445 -1.01407 

6step 01 L 0.24124 1.07192 -0.52503 

H 0.25478 -0.41143 0.02709 

10 H 0.20182 -1.45011 -1.11468 

 

3.3.2 Soft and Hard Error Analysis  

The reliability of a PRAM cell can be analyzed with respect to data retention, 

cycling endurance and data disturbs [28]. In this subsection, we describe the error sources 

that impact data retention and cycling endurance. We neglect the effect of errors resulting 

from data disturbs since they are not as significant.  

A. Soft Error  Analysis 

Data retention represents the capability of storing data reliably over a time period 

and data retention time is the longest time that the data can be stored reliably. We define 

data storage time (DST) as the time that the data is stored in memory between two 



 

  80 

consecutive WRITEs. Thus DST has to be less than the data retention time. DST is 

different for different types of applications. It is about 1 hour (3*10
3
s) if the PRAM is 

used as the virtual memory in laboratory computers that only save the project of the 

current user. On the other hand, if PRAM is used for daily back up in university servers, 

it is about 1day (8*10
4
s). For PRAM, data retention depends on the stability of the 

resistance in the crystalline and amorphous phases. While the crystalline phase is fairly 

stable with time and temperature, the amorphous phase suffers from resistance drift and 

spontaneous crystallization. The resistance increases due to structure relaxation (SR) [22], 

a phenomenon seen in amorphous chalcogenides and related to the dynamics of the 

intrinsic traps.  

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
7

R
e

s
is

ta
n
c
e

(O
h
m

)

Time(s)

Symbols: measured data    Lines: simulation data

00

01
10
11

e

v

At R
t

t
RR += )(

0

%40/ =nn ms

 

Figure 3.8. Resistance drift comparison between proposed MLC PRAM model and 

measured data [71]. 

 

A simple model has been built to model resistance drift due to SR as shown in 

Figure 3.8. Since RA represent the amorphous active region exclusively, let Re represent 

the impact of all the other resistances. Then, the data storage time (DST) dependent 

resistance is given by 



 

  81 

                                                     

eAt R
t

t
RR +ö

ö
÷

õ
æ
æ
ç

å
=

n

0                      (Eq. 3.5) 

where RA and Re are varying and ɜ is the resistance drift coefficient, which is constant for 

all the intermediate states. In this paper, ɜ is set to 0.11, a typical value which has been 

used in [33] and [72], and the standard deviation to mean ratio is 40% as defined in [33]. 

Measured data from [71] almost match the simulated data as shown in Figure 3.8. Based 

on the initial resistance in Table 3.1, RA and Re in this paper are listed in Table 3.5.  

Table 3.5. Parameters of resistance drift model. 

 State 

00 

State 

01 

State  

10 

State  

11 

RA(ɋ) 225000 48319 15319 10026 

Re(ɋ) 0 3533 265 18 

While resistance drift occurs for all four states, the drift in the resistance of 

intermediate state ó01ô and ó10ô causes soft errors. This is because the effect of the 

resistance drift is annulled in the next WRITE operation. There are two mechanisms that 

result in soft errors, Es(ó10ô->ô01ô) due to the H edge of state ó10ô crossing Rth(10,01) and  

Es(ó01ô->ô00ô) due to the H edge of state ó01ô crossing Rth(01,00).  Thus error rates depend 

on the distributions of the resistances of states ó10ô and ó01ô and the values of Rth(10,01) 

and Rth(01,00). Increasing Rth(01,00) results in larger reduction in the soft error rate, as will be 

shown later. The mechanism that results in soft errors in an MLC PRAM is shown in 

Figure 3.9. 



 

  82 

GST 

Resistance 

1E0 1E101E51E-5
Time(s)

00

10
11

4
 s

ta
te

s
 o

f 
P

C
R

A
M

 c
e

ll

Resistance 

distribution

Resistance drift 

Soft Error Rate

00

01

10
11

Rth(01,00)

Rth(10,01)
01

 

Figure 3.9. Soft error mechanism of MLC PRAM. 

B. Hard Errors 

Hard errors occur when the data value stored in one cell cannot be changed in the 

next programming cycle. There are two types of hard errors in SLC PRAM: stuck-

RESET failure and stuck-SET failure [28]. Stuck-SET or stuck-RESET means the value 

of stored data in PRAM cell is stuck in ó1ô or ó0ô state no matter what value has been 

written into the cell. These errors increase as the number of programming cycles 

increases. 

Stuck-SET failure is due to repeated cycling that leads to Sb enrichment at the 

bottom electrode [72]. Sb rich materials have a lower crystallization temperature leading 

to data loss and crystallization of the region above the bottom electrode at much lower 

temperatures than the original material composition. As a result, the bottom electrode 

cannot heat the GST material sufficiently, and the resistance is lower than the desired 

level for reset state. The resistance drop can be attributed to the Ge density distribution 



 

  83 

change, similar to the trap density change for resistance drift. The resistance reduction is 

a power function of the number of programming cycles (NPC) and is given by  

                                                    æR=a*(NPC)
b
                          (Eq. 3.6) 

 where a equals 151609 and b equals 0.16036 [34].  Figure 3.10 compares the resistance 

drop model of ó00ô state with measured data from [73]. 

 

Figure 3.10. Resistance drop of ó00ô state with number of programming cycles [73]. 

 

In a stuck-RESET failure, the device resistance suddenly and irretrievably spikes, 

entering a state that has much higher resistance than the normal RESET state. Stuck-

RESET can also be caused by over programmed current [28]. Higher programming 

current results in larger amorphous volume, which takes more time to become crystalline, 

and shows higher resistance than desired value after a SET operation. 

For MLC PRAM, the failure characteristics due to NPC is similar to that in SLC 

PRAM but the number of hard errors in MLC PRAM is larger than that in SLC PRAM. 

Since the threshold resistance between state ó00ô and state ó01ô in MLC PRAM is higher 

than the threshold resistance between state ó0ô and state ó1ô in SLC PRAM, for the same 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
4

10
5

10
6

 Measured Resistance 

 Simulated Resistance

R
e

s
is

ta
n

c
e

(O
h

m
)

Number of programming cycles

Resistance of state "00"



 

  84 

NPC, the number of errors due to distribution of state ó00ô crossing Rth(00,01) is higher. 

The mechanism that causes hard errors in MLC PRAM is shown in Figure 3.11. 

GST 

Resistance 

1E81E71E6

Number of write cycles

00

01

10

11

4
 S

ta
te

s
 o

f 
P

C
R

A
M

 c
e

ll

Resistance 

Distribution

Resistance 

drop

 Resistance of state ñ00ò

Hard Error Rate

Rth(01,00)

 

Figure 3.11 Hard error mechanism of MLC PRAM. 

 

C. Data disturb 

Data disturb, also known as proximity disturb, can occur in a cell in RESET state 

if surrounding cells are repeatedly programmed. In this case, the heat generated during 

the programming operation diffuses from the neighboring cells and accelerates 

crystallization. Another type of disturb, READ disturb, occurs when a cell is READ 

many times. This type of disturb is dependent upon the applied cell voltage and ambient 

temperature. Both these types of disturbs are not as prevalent and so in the rest of this 

chapter we ignore the increase in error due to data disturbs.  

3.4 Related Work 

Many architecture-level techniques have been proposed to achieve low decoding 

overhead. Techniques to reduce hard errors in SLC PRAM have been presented in [29-



 

  85 

32]. Wear leveling techniques and a hybrid memory architecture that reduce the number 

of WRITE cycles in PRAM have been proposed in [29]. The schemes in [30] and [31] 

can identify the locations of hard errors based on READ-and-verify process. While 

additional storage area is needed to store the location addresses of hard errors in [30], 

iterative error partitioning algorithm is proposed in [5] to guarantee that only one hard 

error is distributed in one subblock and it can be corrected during READ operation. 

Another scheme [32] uses fine-grained remapping with BCH code, and can correct up to 

6 errors. Based on simulation result that most blocks have no more than 1 hard error 

when the block size is small, ECC unit in [32] has flexible error correction capability. 

Parity bits for correcting 1 hard error are stored in the same memory block with 

information bits and can be READ out simultaneously. If the number of hard errors 

increases, stronger codes are required and parity bits are READ out from another location. 

For correcting soft errors in MLC PRAM, a time tag is used in [8] to record the retention 

time information for each memory block or page and this information is used to 

determine the threshold resistance in READ operation. However, tuning threshold 

resistance for reducing only soft errors has an adverse effect on its hard error rate.  

The latency and energy of PRAM based memory systems have also been studied 

in [74-77]. The PRAM device model parameters were embedded into CACTI [49] to 

create PRAM memory simulators in [74] [75]. These were used to characterize 

heterogeneous memory systems in terms of system level energy consumption and timing 

performance in [76] [77]. None of these works considered the reliability of PRAM, 

especially MLC PRAM.  



 

  86 

3.5. Architecture-level Error Control 

3.5.1 Gray Coding and 2-bit Interleaving 

In Section 3.3, we showed that the resistance drift of ó10ô state to ó01ôstate and 

resistance drift of ó01ô state to ó00ô state causes soft errors, and resistance drift of ó00ô 

state to ó01ô state causes hard errors. Here, we propose a scheme based on combination of 

Gray code based encoding and 2-bit interleaving [35] that helps partition these errors so 

that a lower strength ECC can be used for at least half of the bits. By using Gray code 

based encoding for a 2bit MLC, the mapping of ó00ô and ó01ô remains the same, but ó10ô 

is now mapped to ó11ô and ó11ô is mapped to ó10ô. Thus soft errors due to resistance drift 

of states ô10ô to ô01ô translate to error due to resistance drifts of states ó11ô to ó01ô. Now 

with 2-bit interleaving, these soft errors are now localized in the most significant bit 

(MSB) or the óoddô bit. Similarly the errors due to resistance drift of ó00ô to ó01ô that 

causes hard errors and resistance drift of ó01ô to ó00ô that causes soft errors are localized 

in the least significant bit (LSB) or óevenô bit. This is shown in Figure 3.12. 

 

Regular Coding

Gray Coding

1             1 1            0 0           1 0           0

1             0 1            1 0           1 0           0

MSB:Soft Errors LSB: Hard &Soft Errors
 

Figure 3.12 Error distribution after Gray coding of 4 states. 



 

  87 

10 11 00 10 01...Information 

Odd block

Even block

1 1 0 1 0...

0 01 10

P1 P2

Strong ECC

Simple ECC
 

Figure 3.13 Encoding flow of 2-bit interleaving technique. 

Figure 3.13 describes the 2-bit interleaving technique; the odd block processes the 

MSB bits while the even block processes the LSB bits. Thus each block processes half 

the number of bits. The data in the odd block contain fewer errors and are encoded by a 

simple ECC scheme, such as Hamming code. The data in the even block contain larger 

number of errors and so we propose to use subblock flipping and BCH codes to correct 

the errors. Note that the errors in the even block are low in the beginning and increase 

with NPC while the errors in the odd block are always low.  This fact can be exploited in 

the design of a flexible ECC scheme but has not been addressed in this work. 

3.5.2 Subblock Flipping  

Subblock flipping [5] is a technique that flips part of the information block or 

subblock, after READ-and-verify process in the WRITE operation. It eliminates óvisibleô 

(V) hard errors which are stuck at the opposite value of what was written and therefore 

can be detected by this process. The invisible (I) hard errors are stuck at the same value 

of what was written and cannot be found by READ-and-verify.  

The iterative subblock flipping algorithm in [5] partitions the information data 

into multiple subblocks such that in the end there is only a single hard error in each of the 



 

  88 

subblocks. If there are multiple hard errors, this technique requires several iterations to 

guarantee no V errors. Since each iteration involves PRAM WRITE, this technique is not 

energy efficient. Also, the subblock size is different across iterations, thereby increasing 

the complexity of the memory system.  

We propose a non-iterative technique where the information bits are partitioned 

into fixed number of equal sized subblocks. This method was first proposed in [16]. 

Among the four 2 bit data patterns (00,01,10,11), a V error only occurs when data ó00ô is 

programmed in a Stuck-Set failure cell while data ó01ô, ó10ô and ó11ô result in an I error. 

Thus, the probability of a V error is 25%, and the probability of an I error is 75%. It can 

be shown that if the Stuck-Set cell failure rate is 10
-3

, the probability that a subblock has 

only Stuck-Set cell failure is more than 99.7%.  

In the case of one Stuck-Set failure cell per subblock, one V or one I error can be 

corrected by one iteration of subblock flipping. If there are 2 or 3 Stuck-Set failures in a 

subblock, then a single iteration of subblock flipping can also reduce them as shown in 

Table 3.6. In the case of 2 Stuck-Set failure in a subblock, the probability of I=2, V=0 is 

(3/4)2 =9/16 and the probability of V=2 and I=0 is (1/4)2 = 1/16.  For I=2, V=0 case, 

subblock flipping is not required since there are no visible errors. For I=0, V=2 case, 

there are (1/16)*2=1/8 V error before subblock flipping and result in 0 V errors after 

subblock flipping. For I=1 and V=1 case, the probability is (3/4)*(1/4)*2=6/16 before 

subblock flipping. In this case, V errors can be corrected by subblock flipping except for 

data pattern ó01ô which results in a V error after flipping (LSB in even block is flipped 

from 1 to 0). Similarly, in the case of 3 Stuck-Set cells per subblock, the average number 



 

  89 

of V errors after subblock flipping is 3/8. Thus, a single iteration of subblock flipping can 

reduce the number of hard errors significantly and a simple ECC scheme can be used to 

handle the remaining errors. Note that in contrast to [5] which only handles hard errors, 

we include an ECC scheme to handle the soft errors. Thus we propose to use one iteration 

of subblock flipping and simple ECC schemes to handle all the errors.  

Table 3.6.  Visible hard error reduction due to subblock flipping when there are multiple 

Stuck-Set cells per subblock (V for óvisibleô errors and óIô for óinvisibleô errors) 
Stuck-Set 

failures  

I V Probability of 

I&V error 

Visible 

errors 

Visible errors 

left after SF 

 

2 

1 1 6/16 6/16  

     1/8 2 0 9/16 0 

0 2 1/16 1/8 

 

3 

1 2 9/64 9/32  

 

     3/8 
2 1 27/64 27/64 

3 0 27/64 0 

0 3 1/64 3/64 
 

 

The hardware overhead of subblock flipping include XOR gates that are used to 

flip data and extra storage of the flag bits. There is additional overhead due to latency and 

energy of the 2nd WRITE. The extra latency due to the 2nd WRITE is the BFR of the 

256 bit block and is given by 

                L2nd= ρ ρ "%2 ,                            (Eq. 3.6) 

The increase in energy due to the 2nd WRITE is the BFR of the subblock. 

Assuming one subblock is written into main memory bank, only the subblock having 

errors needs the 2nd WRITE. It is given by  

               E2nd = ρ ρ "%2 Ⱦ  ,                         (Eq. 3.7) 



 

  90 

where p is the number of subblocks. According to equation (3.6) and (3.7), E2nd and L2nd 

are about 3% and 22.6% when the raw hard error rate is 10
-3

. The E2nd of [5] equals to 

BERraw*N/p, which is larger than that of the proposed scheme.  

3.6. Circuit-level Error Control 

In Section 3.3, we have shown that the soft error rate increases with DST and that 

the hard error rate increases with NPC. In this section, we show how the error rate can be 

reduced by tuning the threshold resistance, Rth(01,00) for a specific DST. Recall that 

threshold resistance can be tuned by changing the reference current of the sense amplifier 

as in [13]. DST is different for different types of memory. DST is about 1hour (3*10
3
s) if 

the PRAM is used as the virtual memory in laboratory computers that only save the 

project of the current user. On the other hand, if PRAM is used for daily back up in 

university servers, the DST is about 1day (8*10
5
s). So we consider a range of DST values 

from 10
4
 sec to 10

6
 sec.  

3.6.1 Soft error rate 

The soft error rate of 2bit MLC PRAM is a function of the resistance drift of  ó01ô 

to ó00ô state, given by Es(ó01ô-> ó00ô), and the resistance drift of  ó10ô to ó01ô state, given 

by Es(ó10ô-> ó01ô). While Es (ó01ô-> ó00ô) depends on the value of Rth(01,00), Es(ó10ô-> 

ó01ô) depends on the value of Rth(10,01). Figure 3.14 describes the soft error rates due to 

resistance drift of states ó10ô-> ó01ô and state ó01ô -> ó00ô. It also shows how the soft 

error rate increases with DST for different values of Rth(01,00). In the rest of this section, 

we focus on Rth(01,00) since it has a much higher impact on the total soft error rate. As 



 

  91 

Rth(01,00) increases, the soft error rate reduces,  and so tuning Rth(01,00)  is an effective way 

of reducing the soft error rate [17]. A technique to record the DST for every memory 

block and then using this to tune the threshold resistances between all the intermediate 

states has been proposed in [8].  Note that after Gray code encoding, the ó10ô state and 

ó11ô state are switched. 

 

Figure 3.14. Es (ó10ô-> ó01ô) and Es (ó01ô-> ó00ô) increase with data storage time. 

3.6.2 Hard Error Rate 

 

Figure 3.15. Hard error rate as a function of Rth(01,00) and NPC. Hard error rate drops due 

to subblock flipping (SF). 

0 1 2 3 4 5 6 7 8

1E-13

1E-11

1E-9

1E-7

1E-5

1E-3

S
o

ft
 E

rr
o

r 
R

a
te

Log
10

 DST

 Es(10->01)

Es(01->00):

 R
th(01,00)

=320KW

 R
th(01,00)

=360KW

 R
th(01,00)

=400KW

 R
th(01,00)

=440KW

5.6 5.8 6.0 6.2 6.4 6.6

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

H
a

rd
 E

rr
o

r 
R

a
te

Log
10 

NPC

 R
th(01,00)

=320KW

 R
th(01,00)

=400KW

 R
th(01,00)

=480KW

 R
th(01,00)

=320KW with SF

 R
th(01,00)

=400KW with SF

 R
th(01,00)

=480KW with SF



 

  92 

 

The hard error rate of 2bit MLC PRAM is due to the resistance drop of state ó00ô 

to ó01ô is shown in Figure 3.7. It is a function of Rth(01,00), and the resistance distribution 

of state 00.  Rth(10,01) has no impact on the hard error rate and is not tuned. As NPC 

increases, the resistance of state ó00ô reduces and the probability of the corresponding 

distribution crossing Rth(01,00)  increases, resulting in an increase in hard error rate. Also, 

for any NPC, if Rth(01,00) is set to a large value, the probability of resistance of state ó00ô 

crossing it increases and thereby the hard error rate increases. 

The hard error rate reduces when subblock flipping is used.  Figure 3.15 shows 

that subblock flipping reduces the hard error rate by 6 orders of magnitude for low NPC 

and by 2-3 orders of magnitude for high NPC.  This is because for low NPC, the 

probability that there is only one Stuck-Set failure is high, and the errors caused by single 

failures can be corrected by a single subblock flip. 

3.6.3 Total Error Rate 

Figure 3.16 shows how the hard error and soft error rate change with Rth(01,00). 

This figure also shows how the hard error rate changes with NPC and how the soft error 

rate changes with DST. The hard error rate reduction due to subblock flipping (SF) is also 

shown in Figure 3.16.  This reduction is significant, 2 to 6 orders of magnitude for NPC= 

10
6
 cycles, so in the rest of this chapter, we present error rates after subblock flipping. 



 

  93 

 

Figure 3.16. Soft and hard error rate of 2bit MLC PRAM as a function of Rth(01,00) . Soft 

error rate is calculated when DST is 10
4
, 10

5
 and 10

6
 seconds.  Hard error rate is 

calculated at 10
5.6

, 10
6.0 

and 10
6.6

 cycles.  

 

The total error rate is the sum of hard error rate and soft error rate. Figure 3.17 

shows how Rth(01,00)  can be chosen so that the total error rate is minimum. This method is 

referred to as MTET. For instance, for a storage application with DST=10
5
s when NPC= 

10
6.0

, the minimum total error rate (Point A in Figure 3.18) is achieved when Rth(01,00)  is 

set at 367Kɋ. For higher NPC, e.g. NPC=10
6.2

, hard error rate increases while soft error 

rate decreases and so Rth(01,00)  has to be set to a lower value to achieve the minimum total 

error rate (Point B in Figure 3.17). Reduction in the optimal Rth(01,00)  values with 

increasing NPC for different DST applications is given in Figure 3.18.  Since the optimal 

Rth(01,00)  reduces as NPC increases, the memory controller (MC) should be able to 

monitor  NPC and provide the updated Rth(01,00) values to the sense amplifier control 

circuitry.  

 

200 250 300 350 400 450 500
1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

 Soft BER, DST=10
4
s

 Soft BER,DST=10
5
s

 Soft BER,DST=10
6
s

 Hard BER without SF

 Hard BER with SF

10
5.6 cycles

10
6.6 cycles

E
rr

o
r 

R
a

te

Rth(01,00)(KW) 

10
6.0 cycles



 

  94 

 

Figure 3.17. Total error (hard and soft) rate of 2bit MLC PRAM as a function of Rth(01,00). 

Soft error rate is calculated at 10
5
 seconds and hard error rate is calculated for NPC= 10

6
 

and NPC=10
6.2

.  
 

 

 

Figure 3.18. Optimal threshold resistance as a function of NPC for different DST. 

 

200 250 300 350 400 450 500
1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

B

NPC=10
6.2

E
rr

o
r 

R
a
te

R
th(01,00) 

KW

 Soft Error Rate when DST=10
5
s

 Hard Error Rate

 Total Error Rate

Optimal R
th(01,00)

 for NPC=10
6NPC=10

6

A

5.6 5.8 6.0 6.2 6.4 6.6
250

300

350

400

450

500

O
p
ti
m

a
l 
R

th
(0

1
,0

0
) (

K
W

)

Log
10

 NPC

 DST=10
6
s

 DST=10
5
s 

 DST=10
4
s 



 

  95 

3.7 Device-level Error Control 

The programming current profile, described in terms of current amplitude and 

pulse width, impacts programming energy and latency and also affects the initial 

resistance of logical states. In this section, we analyze these effects in details. All the 

results of memory energy and latency are generated using HSPICE for a single cell in 

45nm technology.  

Figure 3.19 shows the impact of the programming current profile on the ó11ô->ô00ô 

transition. We focus on this transition since it is part of multiple interstate transitions 

including any transition to the ó01ô or ó10ô state. Also, this transition determines the final 

resistance of state ó00ô.  Now the resistance of state ó00ô decreases if the current 

amplitude or pulse width is reduced because the programming current can not provide 

enough energy to heat the entire programming region over melting temperature. 

Figure 3.19 (a) and (b) also show that the programming energy is reduced if the 

current amplitude or the pulse width is reduced. We see that, reducing the pulse width is 

more energy efficient than reducing the current amplitude. For instance, for the same 

mean resistance reduction, e.g., from 2.3M Ohm to 1.6M Ohm, which causes the same 

hard error rate, reducing current amplitude saves 0.2pJ while reducing current pulse 

width saves 0.45pJ. Figure 3.19(c) shows the hard error rates when NPC is 10
5.5 

for 

different current pulse widths. We see that if the current pulse width is reduced from 60ns 

to 45ns, programming energy is reduced by 25% while the hard error rate increases by 

about one decade.  



 

  96 

We also study the impact of current profile tuning for programming to state ô11ô 

from any other state (see Figure 3.20). Here too reducing current pulse width is more 

energy efficient compared to reducing current amplitude.  While the resistance of state 

ó11ô increases, the rate of increases is very slow. Also it results in a small increase in the 

corresponding soft errors as shown in Figure 3.20(c).  

The above analysis show that tuning the programming current profile affects the 

hard error rate significantly (and the soft errors rate mildly). The hard error rate is a 

function of the resistance reduction of the ó00ô state that can be caused by reducing 

current amplitude or reducing pulse width. Of these two options, reducing the current 

pulse width is more energy efficient.  

  

            (a)                                                  (b)                                          (c)       

Figure 3.19.  Programming  ó11ô->ô00ô. Energy reduction and drop in the resistance of 

state ó00ô due to different programming current (a) amplitude and (b) pulse width; (c) 

shows the hard error rate as a function of the current pulse width. 

 

182 184 186 188 190 192 194 196 198
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 R(MOhm)

 Energy(pJ)

I(uA)

R
e

s
is

ta
n
c
e

(M
O

h
m

)

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

 E
n

e
rg

y
(p

J
)

30 35 40 45 50 55 60
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 R(MOhm)

 Energy(nJ)

t(ns)

R
e

s
is

ta
n
c
e

(M
O

h
m

)

0.6

0.8

1.0

1.2

1.4

1.6

 E
n

e
rg

y
(n

J
)

30 35 40 45 50 55 60

1E-5

1E-4

1E-3

0.01

H
a

rd
 e

rr
o

r 
ra

te

t(ns)



 

  97 

  

         (a)                                                   (b)                                            (c)       

Figure 3.20. Programming to stateô11ô.  Energy reduction and increase in the resistance 

of state ó11ô  due to different programming current (a) amplitude and (b) width;(c) shows 

the soft error rate as a function of the current pulse width. 
 

  

(a)                                                   (b)                                           (c) 

Figure 3.21.  Programming (a) latency, (b) energy and (c) soft error rate due to different 

programming strategies to intermediate states.   

 

In MLC PRAM, for intermediate states, the programming strategy  represented by 

the number of short current pulses, impact both the memory latency and energy.  

According to the FSM shown in Figure 3.5, the longest programming latency in MLC 

PRAM is for programming to stateô10ô. It includes 3 transitions: any state to state ó11ô, 

state ó11ô to state ó00ô and stateó00ô to stateó10ô.  

120 125 130 135 140
28.0

28.5

29.0

29.5

30.0

30.5

31.0

31.5

32.0

 Resistance

 Energy

I(uA)

R
e

s
is

ta
n
c
e

(K
O

h
m

)

1.0

1.1

1.2

1.3

1.4

E
n

e
rg

y
(p

J
)

80 85 90 95 100 105 110 115 120
29.00

29.25

29.50

29.75

30.00

 Resistance

 Energy

t(ns)

R
e

s
is

ta
n
c
e

(K
O

h
m

)
1.0

1.1

1.2

1.3

1.4

1.5

1.6

 E
n

e
rg

y
(p

J
)

80 90 100 110 120

2E-7

4E-7

6E-7

8E-7

1E-6

S
o

ft
 e

rr
o

r 
ra

te

t(ns)

6 8 10
0

100

200

300

400

500

600

700

Number of programming steps to state'10' 

L
a
te

n
c
y
(n

s
)

 00->10

 11->00

   x->11

6 8 10
0.0

20.0

40.0

60.0

80.0
 00->10

 11->00

   x->11

Number of programming steps to state'10' 

E
n
e
rg

y
(p

J
)

10
3

10
4

10
5

10
6

10
7

10
-6

10
-5

10
-4

10
-3

S
o

ft
 e

ro
r 

ra
te

Data storage time(s)

 6 step

 8 step

10 step



 

  98 

The latency and energy for programming to state ó10ô are shown in Figure 3.21(a) 

and Figure 3.21(b), respectively.  We can see that both the latency and energy increase as 

the number of programming steps increase. For instance, latency increases from 510ns to 

690ns and energy increases from 52pJ to71pJ if the 10-step strategy is used instead of the 

6-step strategy. Note that a programming strategy using more current pulses results in a 

narrower resistance distribution due to the READ and verify process. Figure 3.21(c) 

shows that the soft error rate of 6-step programming strategy is more than one decade 

higher than that of the 10-step programming strategy.  

Now consider a combination of three ó11ô ->ó00ô programming strategies 

corresponding to current width of 45ns, 60ns and 75ns, and three ISPS strategies 

corresponding to use of 6-step, 8-step and 10-step programming. Thus, at the device-level, 

we have nine candidate strategies. Strategies 1, 2 and 3 correspond to 6-step ISPS with 

current pulse width of 45ns, 60ns and 75ns, respectively; Strategies 4,5 and 6 correspond 

to 8-step ISPS with current pulse width of  45ns, 60ns and 75ns, respectively; and  

Strategies 7, 8 and 9 correspond to 10-step ISPS with current pulse width of  45ns, 60ns 

and 75ns, respectively.  

Figure 3.23 shows that, for any programming strategy, the soft error does not 

change with NPC, as long as the ISPS is not changed. On the other hand, hard error rate 

increases monotonically with NPC. Thus, the memory lifetime is separated into two 

phases. When NPC is small, the soft error dominates and both Rth(10,01) and Rth(01,00) are 

increased to lower the total soft error rate. When NPC increases beyond a certain point, 

hard errors dominate, and only Rth(01,00) has to be increased to lower the hard error rate. 



 

  99 

Soft errors 

dominate

Hard errors 

dominate

NPC

B
E

R

Soft error due 

to ISPS

Hard error due 

to ó11ô->ô00ô

 

Figure 3.22.  Soft errors and hard errors as a function of NPC. 

 

The error performance of these nine programming strategies as a function of NPC 

is shown in Figure 3.23.  We see that the nine BER curves are separated into three 

clusters corresponding to three ISPS strategies. In each cluster, the three curves 

correspond to the three current pulse widths while programming ó11ô -> ó00ô. The BER 

distance between these three clusters is about one decade which is larger than the BER 

distance between the three curves in a cluster. This observation accords with the soft 

error rates of different  ISPS  strategies in Figure 3.19 and hard error rates due to different 

current pulse widths of programming ó11ô to ó00ô in Figure 3.21. 

 

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

M
in

im
u
m

 B
E

R

Log
10

NPC

 1 6step+45ns

 2 6step+60ns

 3 6step+75ns

 4 8step+45ns

 5 8step+60ns

 6 8step+75ns

 7 10step+45ns

 8 10step+60ns

 9 10step+75ns



 

  100 

Figure 3.23.  Bit error rate of nine programming strategies for different NPC. 

 

3.8. Multi-level Error Control Approach 

In order to evaluate PRAM memory reliability, we consider block failure rate 

(BFR) as the performance metric. This is because the unit of access is typically one block 

of memory, and if errors are detected but can not be corrected in a block, the whole block 

has to be replaced. BFR and BER are related by the following equation [15]. 

ὄὊὙὖὩὶὶέὶὸ В
ὔ
Ὥ
ὄὉὙρ ὄὉὙ          (Eq. 3.7)         

where BER is the bit error rate, which is the input to the ECC, Ô is the correction strength 

of the ECC, and N is the block size. We consider reliability constraint corresponding to 

BFR of 10
-8

. This is quite typical and corresponds to failure of at most 1 block in an hour 

when main memory access frequency is 2*10
3
/s.  

We assume that the number of information bits per block is 512 bits. In the 

proposed method, the 2bits in an encoded word are separated into an óoddô block which 

contains all the odd bits and an óevenô block which contains all the even blocks. Thus 

both the odd block and the even block are of size of 256 bits. The odd block has less 

errors and always uses Hamming code. The even block has most of the errors and uses 

stronger codes such as BCH.  

Figure 3.24 compares the BFR achieved by eight BCH codes with error correction 

capability ranging from t=1 to t=8.  To achieve target BFR of 10
-8

, the raw BER of 

different codes is different. For instance, while the raw BER of BCH(t=4) is 2.7*10
-4

, it is 

1.55*10
-5

 for BCH(t=2). A stronger BCH code such as a t=4 code has significantly higher 



 

  101 

latency and energy cost. Our goal is to use a simple BCH code which implies that the raw 

BER has to be aggressively reduced by architecture, circuit and device level techniques.   

1E-7 1E-6 1E-5 1E-4 1E-3
1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

B
F

R

BER

 t=1  t=2

 t=3  t=4

 t=5  t=6

 t=7  t=8

 No ECC

 

Figure 3.24. Block failure rate of the different ECC schemes for a 256 bit block. 

 

Gray coding,

2bit interleaving

Hamming 

based ECC

Subblock 

Flipping

Odd block Even block

Threshold 

Resistance 

Tuning

BCH 

based ECC

Architecture

Circuit

System

Current Profile TuningDevice

 

Figure 3.25. Multi-level approach for reducing errors in MLC PRAM. 

 

In the following sub-sections, we present multi-level approaches that spans 

architecture, circuit and system level to improve the reliability of MLC PRAM. We show 



 

  102 

that the multi-level approach, helps lower the error rate before ECC, so that a simple 

ECC is sufficient to guarantee memory reliability constraint with low hardware overhead. 

Figure 3.25 describes the overall scheme. 

3.8.1. Simulation Setup 

A. ECC Implementation Results 

To estimate the hardware cost of the BCH-based ECC scheme, we implement 

BCH decoders using an iterative scheme based on inverse-free Berlekamp-Massey 

(SiBM) algorithm. The 2t-folded SiBM architecture [15] is used to minimize the circuit 

overhead of Key-equation solver.  The syndromes are calculated in parallel and a parallel 

factor of 8 is used for calculations in the Chien search block. For small t such as when 

t=2, the error locator equation is a quadratic equation, and its roots can be computed 

easily [17]-[19].   

The BCH based ECC schemes (t ranging from 2 to 8) have been synthesized in 

45nm technology using Nangate cell library [20] and Synopsys Design Compiler [21]. 

The synthesis results are listed in Table 3.8. Since odd block uses Hamming code while 

even block uses BCH codes, Table 5 also includes the additional storage (percentage) due 

to ECC in both blocks. For instance, for BCH(t=2), the additional storage overhead for 

even block is 6.5% and it is 7.03% overall; the difference is due to the storage required to 

store parity bits corresponding to Hamming code and 8 óflagô bits for block flipping. For 

all the BCH codes, the energy and latency of syndrome calculation block is constant 

while that of the KES and Chien search block increases as t increases. From Table 3.7, 

we also see that the BCH (t=2) scheme has significantly lower latency due to the use of 



 

  103 

the fast decoding algorithm. However, when the number of errors is fairly small (less 

than 10
-4

), only the syndrome calculation unit is activated, and the additional latency due 

to use of stronger codes affects the IPC performance only when the number of errors is 

very large.  

Table 3.7.  Hardware overhead of ECC decoding schemes (BCH is used for even blocks 

and Hamming us used for odd blocks). 

 
 Energy (pJ) 

(syndrome+ 

KES&Chien) 

Latency (ns) 

(syndrome+ 

KES &Chien) 

Additional Storage 

    Odd(Total) 

BCH(t=8) 40+50 25+99.82 28.1% (17.6%) 

BCH(t=7) 35+41 25+81.22 24.6% (15.8%) 

BCH(t=6) 30+33 25+65.10 21.1% (14.5%) 

BCH(t=5) 25+26 25+51.46 17.6% (12.3%) 

BCH(t=4) 20+22 25+40.30 14.1% (10.5%) 

BCH(t=3) 15+16 25+31.62 10.1% (8.8%) 

BCH (t=2) 10+1.5 25+2.7 6.5% (7.03%) 

Hamming 4.1 1.8 3.7% 

B. CACTI Setup 

The CACTI [22] simulation configuration is listed in Table 3.8.  We obtained the 

PRAM cell memory circuit parameters, such as WRITE/READ current, resistance, and 

access latency using HSPICE, and embedded them into CACTI.  Since PRAM is a 

resistive memory, the equations for bitline energy and latency had to be modified as well. 

The rest of the parameters are the same as the default parameters used in DRAM memory 

simulator with ITRS low operation power (LOP) setting used for peripheral circuits [23].  

 

 

 

 



 

  104 

 

Table 3.8. CACTI simulation configuration for MLC PRAM. 

Technology node 45nm 

Vdd 1V 

Number of banks 8 

Burst length 8 

Peripheral circuitry ITRS Low power 

No. of R/W ports 1 

Temperature 300k 

Wire outside mat Global 

Interconnection Conservative 
 

The 2bit MLC PRAM cell parameters were obtained using the setting in Table 3.1.  

256 cells corresponding to a 512 bit block were simulated for WRITE/READ operations. 

The WRITE energy and latency of stateô00ô for current pulse widths Ű=45ns, 60ns and 

75ns are given in Table 3.9. The WRITE energy and latency of intermediate states ó10ô 

and ó01ô corresponding to 6-step, 8-step and 10-step programming strategies are given in 

Table 3.10. Note that the WRITE latency and WRITE energy of two intermediate states 

ó01ô and ó10ô are much higher than that of ó11ô or ó00ô states. This is because the WRITE 

operation of intermediate states requires a READ & verify step after each short current 

pulse, as described in Section 3.2. Table 3.11 shows CACTI latency and energy results of 

all transitions for Strategy 5 (8 steps and 60ns current pulse width). For the DRAM cache 

that is used along with the PRAM main memory in the hybrid memory configuration, we 

use CACTI in high performance mode. 

The ECC unit affects memory READ latency more than memory energy since the 

PRAM WRITE/READ energy is much higher than the energy of ECC unit. The READ 



 

  105 

latency and energy for different programming transitions is constant, given by 17.23ns 

and 3.80 nJ, respectively.  

Table 3.9. CACTI results for 256 cell 2bit MLC PRAM for programming to state ô00ô 

and ó11ô. 
Transition WRITE Latency (ns) 

Ű=45ns/60ns/75ns 

WRITE Energy (nJ) 

Ű=45ns/60ns/75ns 

11->00 50/65/80 7.12/8.55/9.97 

x->11 82 8.08 
 

Table 3.10. CACTI results for 256 cell 2bit MLC PRAM for programming intermediate 

states. 
Transition WRITE Latency (ns) 

6step/8step /10step 

WRITE Energy (nJ) 

6step/8step /10step 

00->01 225/342/452 29.17/49.6/61.42 

00->10 364/451/542 43.52/65.67/80.71 
 

Table 3.11. CACTI WRITE latency and energy of interstate transitions corresponding to 

Strategy 5. 
 Latency;Energy 

00 01 10 11 

00    342ns;49.6nJ 451ns;65.67nJ 82ns;8.08nJ 

01 147ns;16.63nJ  598ns;82.30nJ 82ns;8.08nJ 

10 147ns;16.63nJ 489ns;66.23nJ  82ns;8.08nJ 

11    65ns;8.55nJ 407ns;58.15nJ 506ns;74.22nJ  

C. GEM5 Setup 

We use a single core setting in GEM5 [24] to simulate the performance of a 

system with PRAM based main memory. The configurations used in GEM5 are listed in 

Table 3.12. Our workload includes the benchmarks of SPEC CPU INT 2006 [25] and 

DaCapo-9.12 [26]. The SPEC CPU INT 2006 benchmarks include perlbench, bzip2, gcc, 

mcf, gobmk, hmmer, sjeng, libquantum, h264ref, omnetpp, astar and xalancbmk. DaCapo 

benchmarks are written in Java, and consist of a set of open source, client-side, real world 

applications with non-trivial memory loads. For GEM5 simulations, the PRAM memory 

latency obtained by CACTI and ECC latency obtained through synthesis using 45nm 



 

  106 

technology are expressed in number of cycles corresponding to the processor frequency 

of 2GHz.  

To hide the long PRAM WRITE latency, we add a DRAM cache in front of the 

PRAM. READ latency from hybrid memory includes 95 cycles of wire routing delay, 

memory READ operation latency and ECC decoder latency. The advantages of using 

DRAM cache, in terms of energy and latency reduction, are described in Section 3.8.3.A. 

Tradeoffs between energy, IPC and memory lifetime based on configuration with DRAM 

cache are given in Section 3.8.3.B.  

 Table 3.12.  System evaluation configuration 

Processor Single core 2GHz. Pipeline 16 stages. ; out-of-order 

execution 

L1 cache(SRAM) ICache & DCache 64KB, each block is 64 bytes, 4-

way. latency is 4 cycles 

L2 cache(SRAM) L2 Cache 2MB, each block is 64 bytes, 8-way. latency 

is 16 cycles 

Memory bank(PRAM) Optional DRAM cache ( 512KB, 1MB, 2MB, 4MB 

and 8MB). 2GB PRAM memory. Each block is 64 

bytes. READ latency is 95+ECC decoder cycles, 

WRITE latency corresponds to programming strategy 

Benchmarks SPEC 2006, DaCapo 

Instruction Fetch 
4 instructions per cycle; fetch and at first predicted 

taken branch 

Regs Physical Integer Regs: 256; Physical Float Regs: 256; 

Execution Engine 
4-wide decode/rename/dispatch/issue/WRITE back; 

Load Queue: 64-entry; Store Queue: 64-entry 

Branch Predictor 

4K-entry, 4-way BTB (LRU), 1-cycle prediction 

delay; 32-entry return address stack; 

4096-entry GShare. 15-cycle min. branch 

misprediction penalty 

 

3.8.2 Multi-level Approach 1 (SF+ Rth Tuning) 

In this section, we compare the performance of the different candidate strategies 

using architecture level and circuit level techniques to improve reliability. At the 



 

  107 

architecture level, we employ subblock flipping along with Gray coding and 2-bit 

interleaving. At the circuit level we employ threshold resistance tuning. We consider two 

schemes: minimum total error rate tuning (MTET) scheme described in Section 3.6 and 

minimum soft error rate tuning (MSET) scheme that fixes Rth(01,00) and uses a fixed ECC 

scheme to correct soft errors.  

Minimum Total Error Tuning (MTET) : This scheme tunes Rth(01,00)  so that the total 

error rate is minimized for a given DST and NPC configuration. While Rth(01,00) tuning 

provides an easy way of achieving the minimum possible error rate, to satisfy the BFR 

constraint, optimal Rth(01,00) is not constant and reduces with increase in NPC. Figure 3.26 

plots the minimum error rate after Rth(01,00) tuning as a function of NPC.  Horizontal 

dashed lines in Figure 3.26 correspond to the BER of the different ECC schemes such 

that BFR=10
-8 

is guaranteed.  To achieve the same memory lifetime under BFR constraint, 

lower DST applications require lower error correction capability. For instance, to achieve 

lifetime of NPC= 10
6.4

, a DST=10
4
s system requires BCH(t=2) code while a DST=10

5
s  

system needs BCH(t=3) code.  

For systems that have to support applications with multiple DST values, if the 

ECC scheme is fixed, then the sense amplifier needs to be able to support multiple 

Rth(01,00) values. For instance, if the ECC scheme is fixed at BCH(t=3), then for DST=10
4
 

sec, Rth(01,00)  has to be set at 276Kɋ (Point C), 328Kɋ (Point E) and 400Kɋ (Point G), 

respectively. Thus the number of Rth(01,00) values that need to be supported depends on the 

DST values of the different applications. Table 3.13 describes the ECC schemes, optimal 



 

  108 

Rth(01,00) values and memory lifetime (in terms of NPC) for applications with different 

DST. 

 

 

                 (a)                                                                         (b) 

Figure 3.26 Minimum error rate changes as a function of NPC after Rth(01,00) tuning, (a) 

when ECC scheme is fixed. (b) when Rth(01,00) value is fixed. 

 

In order to reduce overhead in the sense amplifier circuitry due to support of 

multiple Rth(01,00)  values, we choose one Rth(01,00) value.  In fact, we choose one Rth(01,00) 

value and one ECC scheme to guarantee the BFR constraint for the worst case, which 

corresponds to the application with the longest DST. In Figure 3.26(b), bold solid lines 

correspond to equal Rth(01,00) values. If Rth(01,00) is fixed at 360Kɋ, BCH(t=4) is required to 

guarantee BFR=10
-8

 for applications with DST values ranging from 10
4 

sec to 10
6
 sec. 

The memory lifetime is also determined by the application with the longest DST.  

Table 3.13. ECC schemes required to meet BFR=10-8 and corresponding lifetime as well 

as optimal Rth(01,00) values for different values of DST. 
 DST=10

4
s DST=10

5
s DST=10

6
s 

A B C D E F G H 

t of ECC 1 2 3 2 3 4 3 4 

log10 NPC  5.7  6.4  6.5  6.1  6.4  6.5  6.1  6.3 

5.6 5.8 6.0 6.2 6.4 6.6 6.8
1E-7

1E-6

1E-5

1E-4

1E-3

K

J

R
th(01,00)

=380KW

R
th(01,00)

=360KW

BCH(t=4)

Log
10

 NPC

M
in

im
u

m
 E

rr
o

r 
R

a
te

 DST=10
6
s   DST=10

5
s   DST=10

4
s 

R
th(01,00)

=325KW
I

5.6 5.8 6.0 6.2 6.4 6.6 6.8
1E-7

1E-6

1E-5

1E-4

1E-3

BCH(t=4)
H

G

F

E

D
C

B

BCH(t=3)

BCH(t=2)

Log
10

 NPC

M
in

im
u

m
 E

rr
o

r 
R

a
te

 DST=10
6
s   DST=10

5
s   DST=10

4
s 

Hamming
A



 

  109 

Rth(01,00) (Kɋ) 377 302 276 365 328 296 400  350 

 
Minimum Soft Error Tuning:  In minimum total error rate tuning (MTET), we do not 

distinguish between hard errors and soft errors and choose Rth(01,00)  to minimize the total 

error rate for given DST and NPC values. In minimum soft error tuning, we tune Rth(01,00) 

so that the soft errors can be corrected by a low cost ECC code that guarantees the 

reliability constraint and the remaining hard errors are corrected by a simpe bit-level code.  

Soft error rates corresponding to three DST values are presented in Figure 3.27. 

Horizontal dashed lines indicate the soft error rates that can be handled by Hamming or 

BCH(t=2) to meet the reliability constraint (BFR=10
-8

). For instance, for DST=10
4
 s, if 

Rth(01,00)  is fixed at 360 Kɋ (Point L ), BFR=10
-8

 can be achieved by Hamming code.  

However, if  DST=10
5 

sec, Hamming is code not sufficient and a BCH(t=2) code is 

required. Specifically for DST=10
5
s, Rth(01,00) should be set at 342 Kɋ (Point M) and 

BCH(t=2) code should be used. For DST=10
6
s, we can either use Rth(01,00) of 370 Kɋ 

(Point N)  and BCH(t=3) code or  Rth(01,00) of 440 Kɋ (Point O) and BCH(t=2) code. We 

always choose the configuration with the cheapest ECC code which in this case is the 

BCH(t=2) code (Point O). 

 

200 250 300 350 400 450 500
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

BCH(t=3) N

Hamming

DST=10
4
s

DST=10
5
s

S
o
ft

 E
rr

o
r 

R
a
te

Rth(01,00)(KW) 

DST=10
6
s

BCH(t=2)

L

M O



 

  110 

Figure 3.27. Minimum soft error tuning for different data storage time (DST).   

 

 

 

 

 

Figure 3.28. Hard error rate as a function of NPC after using Rth(01,00) tuning and ECC to 

correct soft errors.  

 

In summary, the soft error rate can be handled by a combination of Rth(01,00) tuning 

and cheap ECC scheme. It does not depend on NPC unlike hard error rate which is a 

strong function of NPC. Figure 3.28 shows the hard error rate as a function of NPC after 

the soft error rate has been addressed by threshold resistance tuning and ECC for three 

values of DST.  Note that in Figure 3.28, hard error rate curve of DST=10
5
s is lower than 

the hard error rate curve of DST=10
4
s.  That is because in case of DST=10

5
s, BCH(t=2) 

is used instead of Hamming to correct soft errors for BFR=10
-8

. This is a stronger code 

than Hamming and so a lower Rth(01,00) is sufficient. Lower Rth (01,00) results in lower hard 

error rate  for all NPC values as shown in Figure 3.16. 

The hard errors can be corrected by bit-level hard error coding. The memory 

controller records the location of hard errors due to cell failures using a method that is 

similar in spirit to [18][19]. While the existing scheme detects hard errors during READ 

5.6 5.8 6.0 6.2 6.4
1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

 DST=10
4
 s,Hamming

 DST=10
5
 s,BCH(t=2)

 DST=10
6
 s,BCH(t=2)

H
a
rd

 E
rr

o
r 

R
a
te

Log
10 

NPC



 

  111 

by monitoring repeated error patterns, we detect hard errors by a read and verify step 

after WRITE. The hard error locations are stored in a small SRAM memory in the 

memory controller. To correct erasures, the address is compared with the hard error 

locations stored in the SRAM memory and the bits in those locations are flipped.  This 

process costs little latency since SRAM is used in memory controller, but requires 

additional storage to store hard error locations.  

Evaluation of Different Strategies: 

 

Table 3.14 lists the features of the different candidate strategies to guarantee 

BFR=10
-8

. Strategy 1 is the baseline scheme that only uses ECC. Strategy 2 uses 

subblock flipping along with Gray coding and 2bit interleaving to lower hard error rate. 

Strategy 3 uses Rth(01,00)  tuning to minimize the total error rate (MTET) for a given DST 

and NPC. Strategy 4 fixes Rth(01,00)  so that soft errors are corrected by a fixed ECC 

scheme and hard errors are corrected by erasure code (MTST). Strategy 5 uses subblock 

flipping along with MTET while Strategy 6 uses subblock flipping along with MTST.  

For Strategy 1 and 2, Rth(01,00) value is set at 400K.  

 

Table 3.14. Features of candidate strategies. 

 Subblock flipping Rth(01,00)  Additional bits 

    (per block) 

Strategy 1 No N/A; N/A N/A 

Strategy 2 Yes N/A;  N/A Flag bits 

Strategy 3 No MTET; Dynamic NPC 

Strategy 4 No MTST; Fixed Erasure locations 

Strategy 5 Yes MTET; Dynamic Flag bits, NPC 

Strategy 6 Yes MTST; Fixed Flag bits, Erasure locations 



 

  112 

 

A. Error Correction Performance  

Figure 3.29 shows the error rates of the six candidate strategies as function of 

NPC in the case of DST=10
5
s. We pick DST=10

5
s, which is about 1 day, to demonstrate 

our design methodology.  Subblock flipping and threshold resistance tuning result in 

lowering the total error rate significantly.  Thus, Strategies 5 and 6 that both include 

subblock flipping and threshold resistance tuning have the best error performance. 

Between Strategy 5 and Strategy 6, while the error rate of Strategy 5 keeps increasing 

with NPC, error rate of Strategy 6 is constant upto a certain NPC value and then increases 

faster than that of Strategy 5.  This is because upto NPC=10
5.9 

, the soft error rate of 

Strategy 6 can be handled by BCH(t=2), but as NPC increases, the hard error rate become 

increasingly larger. For Strategy 5, BCH(t=2) is sufficient to correct both hard and soft 

errors upto NPC=10
6.3

. Considering that Strategy 6 also uses BCH(t=2) but additional 

storage for erasure location (2.4 bits out of 10,000 data bits on average till NPC=10
6.2

), 

Strategy 5 is more storage efficient than Strategy 6 at the expense of peripheral circuitry 

needed for adaptive threshold resistance tuning. After NPC=10
6.3

, Strategy 5 requires 

stronger ECC scheme while Strategy 6 needs more memory to store hard error locations. 



 

  113 

                

Figure 3.29. Error rate of four error correction strategies vs. NPC for DST=10
5
s. Error 

rate is combination of hard and soft errors. 

B. Storage Overhead 

CACTI simulation results show that the average WRITE energy of PRAM, 

assuming that the four states have equal WRITE probability, is 20.85 nJ, and the READ 

energy is 1.9 nJ. Thus PRAM WRITE/READ energy is much higher than that of the ECC 

unit for all strategies. However the ECC schemes require additional memory to store the 

parity bits and this results in additional energy for READ. Thus, ECC schemes with 

higher additional parity storage have higher energy. 

The storage overhead of all strategies (except the baseline) are given in Figure 

3.30.  The storage overhead calculation includes parity bits of both even and odd blocks, 

normalized to the block size which is 2*256=512bits. For odd block, only 10 parity bits 

are required due to use of Hamming (266,256) code. For even block, additional storage is 

due to ECC parity bits, SF flag bits and storage of hard error locations.  

5.6 5.8 6.0 6.2 6.4 6.6

1E-5

1E-4

1E-3

0.01

T
o
ta

l 
E

rr
o
r 

R
a
te

Log
10

 NPC

 Strategy 1 Baseline

 Strategy 2(SF)

 Strategy 3(MTET)

 Strategy 4(MSET)

 Strategy 5(SF+MTET)

 Strategy 6(SF+MSET)



 

  114 

 

Figure 3.30. Storage overhead for the candidate strategies for 512 bit block and 

DST=10
5
s. 

 

We can see that Strategy 4 and Strategy 6 have the lowest storage overhead for a 

large range of NPC values. This is because the ECC scheme for these two strategies is 

BCH(t=2) while other strategies use stronger ECC codes which require more parity bit 

storage when NPC increases. For very high NPC, Strategy 4 and Strategy 6 have to store 

hard error locations, resulting in an increase in the storage overhead. Also, additional 

storage of Strategy 4 is lower than that of Strategy 6 till NPC= 10
6.5

 due to storage of flag 

bits in subblock flipping. However, when NPC is larger than 10
6.5

, the benefit of using 

subblock flipping is significant and Strategy 6 is a clear winner.   

We pick NPC=10
6.4

 as the expected memory lifetime and evaluate the overhead of 

different strategies in Table 3.15. To achieve this lifetime, baseline has to use BCH code 

with t>20 to guarantee reliability constraint. Using only subblock flipping (Strategy 2) 

can reduce t to 8, while using only threshold resistance tuning (Strategy 3) can reduce t to 

6. Combining subblock flipping and threshold resistance tuning (Strategy 5) can further 

reduce t to 4.  Compared to Strategies 3 and 5, Strategies 4 and 6 use cheaper ECC code 

5.6 5.8 6.0 6.2 6.4 6.6 6.8
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
 Strategy2 (SF)

 Strategy3 (MTET)

 Strategy4 (MSET)

 Strategy5 (SF+MTET)

 Strategy6 (SF+MSET)

S
to

ra
g
e
 O

v
e
rh

e
a
d

Log
10

NPC



 

  115 

with low parity storage along with the storage of hard error locations. Note that each hard 

error location needs 8 bits for block size of 256 bits. Strategy 5 has higher redundancy 

rate compared to Strategy 6. However, it does not have overhead of hard error detection 

and correction.  

Table 3.15. ECC, Rth(01,00) and storage overhead of all strategies for NPC=10
6.4

. (Block 

size is 512 bits) 

 
 ECC 

scheme 

 

Rth(01,00) 

Storage 

Parity bits 

(odd+even) 

Flag 

bits 

Hard error 

locations 

Redundancy 

rate 

Strategy1 BCH(t>20) 400Kɋ 10+ >200 N/A N/A >40% 

Strategy2 BCH(t=8) 400Kɋ 10+72 8 N/A 17.5% 

Strategy3 BCH(t=6) 280Kɋ 10+54 N/A N/A 12.5% 

Strategy4 BCH(t=2) 340Kɋ 10+18 N/A Hard erorrs*8 6.4% 

Strategy5 BCH(t=4) 337Kɋ 10+36 8 N/A 10.5% 

Strategy6 BCH(t=2) 340Kɋ 10+18 8 Hard erorrs*8 7.1% 

 

C. ECC Circuit Overhead 

The decoding latency of the different strategies is primarily a function of the ECC 

code that is used. The latency of decoding single bit hard errors is quite small.  Hard error 

correction only needs one cycle to flip the failure bits once the locations are known. Since 

MC uses SRAM to store log data and hard error locations, comparison with the addresses 

of the hard error locations can be completed by the time data are READ out from PRAM. 

Latency of subblock flipping is given in Equation 3. When raw BER is 10
-4

, only 3% 

blocks need a 2
nd

 WRITE, on average. Considering WRITE latency can be covered by 

buffering or pipelining data while READ latency is more critical to system performance, 

the latency of subblock flipping is not significant. 



 

  116 

The two BCH based ECC schemes have been synthesized in 45nm technology 

using Nangate cell library [23] and Synopsys Design Compiler [24]. From the synthesis 

comparison in Table 3.16, we can see that the latency of BCH(t=2) in Scheme 2 is only 

12% of that of Scheme 1. However, since the PRAM operation latency, especially 

WRITE latency, is much longer than the ECC latency, the effect of different ECC 

decoder latencies on system performance, in terms of IPC is limited [25]. Moreover, 

since the ECC circuit energy is much less compared to WRITE/READ energy of a 512bit 

MLC PRAM which is hundreds of nano Joule [25], we do not discuss the energy or 

power consumption difference between these two strategies.  

Table 3.16 Hardware overhead of ECC decoding schemes. 

 ECC Scheme Energy (pJ) Latency(ns) Area(ÕÍ ) 

Strategy5 BCH (t=4) 56 20.8 8873 

Strategy6 BCH (t=2) 11.2 2.7 6790 

 

D.  System IPC 

In this sub-section, we study the PRAM based system performance in terms of 

system IPC. For GEM5 settings without DRAM cache, the IPC results for the different 

benchmarks are shown in Figure 3.31. It shows that the IPC of using a t=8 ECC scheme 

and multi-level approach (Strategy 6 with BCH t=2) are both lower than the baseline case 

that has no ECC. The average normalized IPC of Strategy 6 is 0.978 and is 0.89 for 

baseline. Thus, the performance degradation of Strategy6 is very small. Even though the 

latency of the ECC unit in baseline is very large, it did not result in massive degradation 



 

  117 

of its IPC. This is because the WRITE latency is significantly larger and the change in 

WRITE latency due to the ECC unit is not that large. 

 

 

Figure 3.31.  Comparison of normalized IPC performance of the two memory system 

using only ECC and multi-level approach for BFR=10
-8

; the normalization is with respect 

to a memory system that has no error correction capability. 

 

In summary, compared to a memory system that has no error correction capability, 

PRAM memories that incorporate only ECC or multi-level approach have much better 

error correction capability but they cost additional latency and energy. When raw BER is 

10
-4

, to achieve BFR=10
-8

, memory system with only ECC costs about 13% additional 

energy and memory system with multi-level approach costs 7% additional energy 

compared to baseline system that has no error correction capability. However, memory 

system with multi-level approach has significantly better IPC performance compared to 

that with only ECC and only 2.2% lower IPC than the baseline system. Thus a memory 

system with multi-level approach has excellent error correction performance with small 

energy and IPC overhead.  

3.8.3 Multi -level Approach 2 (SF+ Rth Tuning+ Current Profile Tuning) 



 

  118 

In this sub-section, we describe a multi-level strategy that adds another level of 

control namely, the device level, to the circuit and architecture levels to further reduce the 

error rate. Specifically, we adjust programming current profile at device-level, tune 

threshold resistance at the circuit-level and employ bit interleaving and subblock flipping 

at the architecture-level. While PRAM reliability can be improved by use of the multi-

level strategy, PRAM timing performance is quite poor. So in this section we focus on 

hybrid memory architecture where a DRAM cache is used to buffer the accesses to 

PRAM memory. 

Hybrid memories based on PRAM with DRAM cache [27] or buffer [28] have 

been shown to enhance performance and improve lifetime. In this section we tune the 

size of the DRAM cache to derive the hybrid memory configuration with the lowest 

energy and latency. Figure 3.26 and Figure 3.27 present the normalized energy and 

normalized latency of the hybrid memory, where the PRAM is of size 2GB and the 

DRAM size is varied from 512B to 8MB. The normalization is with respect to the 

baseline configuration that consists of only a 2GB PRAM memory.  

The PRAM memory  for both baseline and hybrid configurations implements bit 

level partitioning and subblock flipping at the architecture level, threshold resistance 

tuning at the circuit level and programming Strategy 5 (8step+60ns) at the device level. 

The error rates are small enough that BCH (t=3) can be used for the even block and 

Hamming for the odd block to achieve BFR=10
-8 

at NPC=10
6
. For both the odd block and 

the DRAM cache, we use Hamming(266,256) to protect against errors. The SPEC2006 

and DaCapo benchmarks are simulated to obtain the access numbers to PRAM and 



 

  119 

DRAM cache; the average numbers are used to generate energy and latency for the 

different hybrid memory configurations.  

Figure 3.32 shows that the total energy of PRAM based hybrid memory is always 

lower than the baseline configuration and that the total energy of the hybrid memory 

reduces as the DRAM cache size increases. This is because the number of READ/WRITE 

accesses to PRAM significantly reduces when a DRAM cache is used; larger the DRAM 

cache,  lower is the number of PRAM accesses. However, as DRAM cache size increases, 

the DRAM energy increases. For instance, while the DRAM energy is 10% of the total 

energy when DRAM cache size is 2MB, it increases to 24% of the total energy when the 

DRAM cache size increases to 8MB. Thus, there is no benefit in increasing the DRAM 

cache beyond 8MB. Note that, we do not consider ECC circuit energy since it is very 

small compared to memory energy. However use of ECC results in increase in memory 

size and this is taken into account in calculating the memory energy.  

Figure 3.33 shows the latency of core execution (including L1 and L2 cache 

latency), DRAM READ/WRITE latency, PRAM READ latency and ECC decoding 

latency, for the different hybrid memory configurations. Note that the Hamming 

encoding and decoding latency is only 2 cycles which is insignificant compared to other 

latency components and has not been shown separately in Figure 3.33. Since PRAM 

WRITE is buffered by DRAM cache, we only consider PRAM READ latency when 

READ misses occur in DRAM cache. We see that there is a small variation in latency 

reduction as DRAM cache size increases from 512KB to 8MB. Also, while the DRAM 



 

  120 

latency increases for larger DRAM caches, the PRAM READ latency and PRAM ECC 

decoding latency reduces due to fewer accesses.  

 

Figure 3.32. Normalized energy of PRAM based hybrid memory. The normalization is 

with respect to PRAM memory only baseline. 

512K 1M 2M 4M 8M

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

N
o

rm
a

liz
e

d
 L

a
te

n
c
y
 

DRAM Cache Size(Byte)

 ECC Decoding  DRAM

 Core exe  PRAM READ

 

Figure 3.33. Normalized latency of PRAM based hybrid memory. The normalization is 

with respect to PRAM memory only baseline. 

 

We analyze the tradeoffs between programming energy and memory lifetime for 

memory reliability of BFR=10
-8

 for two cases. First, if the PRAM ECC code is set by the 

512K 1M 2M 4M 8M

0.0

0.1

0.2

0.3

0.4

0.5

N
o

rm
la

iz
e

d
 E

n
e

rg
y
 

DRAM Cache Size(Byte)

 PRAM Write

 PRAM Read

 DRAM 



 

  121 

manufacturer, then we show how different programming strategies result in different 

memory lifetimes and different energy consumptions. Next, if we have a specific memory 

lifetime requirement, to achieve BFR=10
-8

, we see that different programming strategies 

have to use different ECC codes. We show the tradeoffs between programming energy 

and memory performance in terms of system IPC.  In both cases, we consider the ECC 

coding latency but do not consider the ECC coding energy because it is much smaller 

than that of PRAM READ/WRITE energy. All results are presented for hybrid memory 

with PRAM of size 2GB and DRAM cache of size 8MB.   

Tradeoffs  between Programming Energy and Memory Lifetime for Fixed ECC 

If the ECC is fixed by the manufacturer, then different programming strategies 

result in different programming energy and memory lifetimes. We do not compare the 

IPC of different strategies in this sub-section.  This is because the DRAM cache is very 

effective at hiding the PRAM programming latency and so the differences in WRITE 

latency among nine strategies do not impact the system IPC.  Figure 3.34 plots the BER 

vs. NPC curves for Strategy 1 (6-step + 45ns), Strategy 5 (8-step + 60ns) and Strategy 9 

(10-step + 75ns). In all cases, the BER increases with NPC. We only consider BCH (t=2) 

code for the even block. Since it can achieve the target BFR of 10
-8 

for a raw BER of 

2*10
-5

.  If Strategy 1 is used (marked by point A), NPC=10
4.1

; if Strategy 5 is used 

(marked by point B), NPC=10
5.4

; if Strategy 9 is used (marked by point C), NPC=10
6.4

. 

Strategy 9 has a significantly larger lifetime thereby reiterating that  more steps in ISPS 

and longer current width in programming ó11ô->ô00ô results in longer lifetime.  



 

  122 

 

Figure 3.34.  For a fixed ECC code, different programming strategies result in different 

memory lifetimes (in terms of NPC). 

 

Figure 3.35. Tradeoff between programming energy of one 512 bit block and memory 

lifetime of all nine strategies. 

 

Figure 3.35 shows the tradeoff between programming energy and memory 

lifetime for all nine strategies. The energy numbers correspond to the energy of one block 

of size 512 bits (256 cells) averaged over all possible transitions for probabilities of bit ó0ô 

and bit ó1ô being equal.    

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

C

           

 1 6step+45ns

 5 8step+60ns

 9 10step+75ns

R
a

w
 B

E
R

Log
10

NPC

BCH(t=2)

A B

4.0 4.5 5.0 5.5 6.0 6.5

120

140

160

180

200

CB

P
ro

g
ra

m
m

in
g
 E

n
e
n
rg

y
(n

J
)

Log
10

 NPC

1 2 3

4
5 6

7 8 9

A



 

  123 

We see that, increasing current pulse width while keeping the number of steps in 

ISPS constant results in significant lifetime enhancement for little increase in 

programming energy. For instance, Strategies 4, 5 and 6 all use 8 steps but increasing the 

current width from 45ns (Strategy 4) to 75ns (Strategy 6), memory lifetime increases 

from 10
5.15 

cycles to 10
5.72 

cycles. However, if we keep the current pulse width the same 

and increase the number of programming steps, both the lifetime and the programming 

energy increases. For instance, if we switch from 6 steps (Strategy 4) to 10 steps 

(Strategy 7), the lifetime increases from 10
5.15 

cycles to 10
5.89

 cycles, but the energy also 

increases from 165pJ to 195 pJ.  Thus strategies 3, 6, 9 offer a good compromise between 

programming energy and memory lifetime. Use of Strategy 9 instead of Strategy 3 

increases memory lifetime from10
4.7 

cycles to 10
6.4 

cycles (50 times longer) at expense of 

programming energy increasing from 122nJ to 195nJ. If the total energy of the hybrid 

memory is considered, this corresponds to average access energy increase from 230nJ to 

303nJ, which is a 31% increase. 

Tradeoffs between Programming Energy and System Performance for Fixed NPC 

Next, we analyze the tradeoff between programming energy and system 

performance, for a specific lifetime requirement corresponding to NPC of 10
6 
cycles. If 

NPC is fixed, then different programming strategies have to use different ECC codes to 

satisfy the BFR constraint. Figure 3.36 shows that, if the memory lifetime is 10
6 
cycles, 

Strategy 1 should use BCH(t=8), Strategy 5 should use BCH(t=3) and Strategy 9 should 

use BCH(t=2).  



 

  124 

The READ latencies of the different strategies listed in Table 3.12 are input to 

GEM5 to obtain the system IPC. The ECC decoding latency is the sum of the latencies of 

the syndrome calculation unit and the KES as well as Chien search units in the worst case. 

However, if the BER is low (less than 10
-4
), then most of the time only the syndrome 

calculation unit is activated and the ECC latency is primarily a function of that of the 

syndrome calculation unit. Table 3.17 gives the total READ latencies for the nine 

strategies in the worst case when the lifetime constraint is NPC=10
6
 cycles.  Note that the 

READ latency includes the ECC decoding latency and the memory READ access latency.  

 

Figure 3.36. For a given lifetime, different programming strategies require different ECC 

codes. 

 

Table 3.17. Worst case latency of 9 strategies under the lifetime constraint of 10
6
 cycles. 

       Strategies 1 2 3 4 5 6 7 8 9 

READ Latency(ns) 

(Equivalent cycles) 

117.1 

(235) 

82.4 

(165) 

68.8 

(138) 

68.8 

(138) 

48.9 

(98) 

48.9 

(98) 

48.9 

(98) 

20.0 

(41) 

20.0 

(41) 

Error corr. capability t 8 6 5 5 3 3 3 2 2 
 

 

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

BCH(t=8)

BCH(t=3)

           

 1 6step+45ns

 5 8step+60ns

 9 10step+75ns

R
a
w

 B
E

R

Log
10

NPC

BCH(t=2)



 

  125 

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34
1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

N
o

rm
a

liz
e

d
 I
P

C
 

Normalized Programming Energy 

1

2

3
4

5 6 7 8 9

 

Figure 3.37. Tradeoff between programming energy (normalized) and system IPC 

(normalized); the normalization is with respect to PRAM baseline configuration. 

 

The normalized IPC of nine programming strategies (averaged over all 

benchmarks) and their normalized programming energies are shown in Figure 3.38. Note 

that the programming energy in Figure 3.37 includes the effect of increase in storage size 

due to additional parity bits. Overall, the normalized IPC increases as the programming 

energy increases; however, beyond Strategy 3 the gain in IPC is quite small. This is 

because Strategy 4~9 have lower BER and thus their ECC latency is primarily 

contributed by the syndrome calculation unit which is the same in all cases. In this case, 

we see that Strategy 3 is a clear winner since it has the lowest energy consumption while 

its IPC is almost the same as other strategies.  

3.9. Conclusion 

In this chapter we described a multi-tiered approach that spanned device, circuit, 

architecture and system layers to improve the reliability of 2bit MLC PRAM. As a first 



 

  126 

step, we derived detailed models to characterize hard errors and soft errors in an MLC 

PRAM.  At the device level, we proposed a new method based on programming current 

profile tuning. We showed that increasing current pulse width for programming state ó00ô 

or increasing number of current pulse for programming states ó01ô and ó10ô increases 

programming energy but reduces hard and soft error rates. At the circuit level, we used 

threshold resistance tuning to achieve the lowest BER for a given combination of DST 

and NPC. At the architecture level, we showed that Gray coding and 2-bit interleaving 

results in low BER in odd bits (subblock) and high BER in even bits (subblock). Use of a 

combination of all techniques including current profile tuning, enables us to use cheaper 

ECC to achieve the reliability constraint. For instance, to achieve BFR of 10
-8

, at 10
6
 

cycles, it is sufficient to use  ECC with t=3 instead of t=8 for the nominal programming 

current profile (Strategy 5). 

We also applied the multi-level approach to improve the reliability of a hybrid 

memory built with PRAM of size 2GB and DRAM of size 8MB. We focused on hybrid 

memory since it hides the PRAM WRITE latency and improves IPC by more than 20%. 

We showed that for a given BFR constraint, if ECC unit is predetermined by the 

manufacturer, memory lifetime can be increased with only a mild increase in energy by 

increasing the current pulse width for programming state ó00ô. We also found that, if 

there is an additional constraint of memory lifetime, then strategies with larger number of 

current pulses result in higher IPC but also significantly higher energy. We concluded 

that reducing the pulse width for programming state ó00ô is again the most cost-effective 

way to improve IPC with low energy overhead. 



 

  127 

 

.



 

  128 

CHAPTER 4 

SPIN-TORQUE-TRANSFER RAM MEMORY 

4.1. Introduction 

STT-MRAM has the advantages of lower power consumption and better 

scalability over conventional magneto-resistive random-access memory (MRAM) which 

uses magnetic fields to flip the active elements. STT-MRAM has shorter READ/WRITE 

latency and can be used as L3 cache unlike PRAM which can only be used as external 

memory. These memories also have errors that are caused by variation in the access 

transistor sizes (W/L), variation in Vth, MTJ geometric variation and initial angle of the 

MTJ.  

In this chapter we propose use of circuit level techniques combined with ECC 

schemes to improve the error performance of STT-RAM. We show how voltage boosting, 

WRITE pulse width adjustment and access transistor W/L sizing can be used to improve 

their reliability. In [44],[82], effect of access transistor sizing and process variation on 

reliability and energy consumption has been studied. In addition, [83] also studied the 

effect of WRITE pulse width and process variation on reliability. In our work, we 

consider the joint effect of WRITE pulse width adjustment and voltage boosting to 

improve reliability with lower overhead. This work was presented in [34]. 

The rest of the chapter is organized as follows. Section 4.2 describes the basics of 

STT-RAM cell operation along with an accurate physical model. Section 4.3 describes 

the causes of READ/WRITE failures in an STT-RAM cell. Existing work has been 

summarized in Section 4.4. Section 4.5 proposes circuit parameter tuning to address these 

http://en.wikipedia.org/wiki/Magnetoresistive_random-access_memory


 

  129 

errors. Section 4.6 focuses on BCH based ECC schemes along with the synthesis results. 

The conclusion is given in section 4.7. 

4.2. Background 

4.2.1 Memory Cell Structure 

In STT-RAM, the resistance of the magnetic tunneling junction (MTJ) determines 

the logical value of the data that is stored. MTJ consist of a thin layer of insulator (spacer-

MgO) about ~1nm thick sandwiched between two layers of ferromagnetic material [41]. 

Magnetic orientation of one layer is kept fixed and an external field is applied to change 

the orientation of the other layer. Direction of magnetization angle (parallel (P) or anti-

parallel (AP)) determines the resistance of MTJ which is translated into storage. Low 

resistance (parallel) state which is accomplished when magnetic orientation of both layers 

is in the same direction corresponds to storage of bit 0. By applying external field higher 

than critical field, magnetization angle of free layer is flipped by 180
o
 which leads to a 

high resistance state (anti-parallel). This state corresponds to storage of bit 1. The 

difference between the resistance values of parallel and anti-parallel states is called 

tunneling magneto-resistance (TMR) defined as 4-2  where 2  and 2  are 

the resistance values at anti-parallel and parallel states.  Increasing the TMR ratio makes 

the separation between states wider and improves the reliability of the cell [82]. Figure 

4.1 describes the cell structure of an STT-RAM and highlights the parallel and anti-

parallel states. 

 



 

  130 

           

                         (a)                                                           (b)                                               (c)                       

Figure 4.1. STT-MRAM structure (a) Parallel, (b) Anti-parallel,  (c) MTJ circuit structure. 

 

A physical model of MTJ based on the energy interaction is presented. 

Magnetization angle of the free layer is determined based on the dimensions of MTJ and 

the external field applied. Energies acting in MTJ are Zeeman, anisotropic and damping 

energy [84]. These energy types determine the change in magnetic orientation, alignment 

of the magnetization angle along the fixed axis and are used to form the LLG (Landauï

LifshitzïGilbert) equation. The stable state of MTJ corresponds to minimum total energy. 

State change of MTJ cell can be derived by combining these energy types: 

                       
qq

a
m cossin0 K

dt

Md
M

M
HM

dt

Md

s

s +³Ö+ÖÖ-=

                           (Eq. 4.1) 

where M is magnetic moment, µ0 is  vacuum permeability, Ŭ is damping constant. Such 

an equation can be modeled using Verilog-A to simulate the circuit characteristics of 

STT-RAM. For instance, differential terms are modeled using capacitance while Zeeman 

and damping energy are described by voltage dependent current source. The voltage of 

the capacitor indicates the evaluated state (magnetization angle) which is further 

translated to resistance of MTJ. 

Free Layer

Pinned Layer

Dielectric

(MgO)

I I

q
q



 

  131 

4.2.2 STT-MRAM Operation 

Consider the cell structure consisting of an access transistor in series with the 

MTJ resistance illustrated in Figure 4.1(c). The access transistor is controlled through 

WL, and the voltage levels used in bit line (BL) and select line (SL) lines determine the 

current which is used to adjust the magnetic field.  

There are three modes of operation for an STT-RAM: WRITE-0, WRITE-1 and 

READ. We distinguish between WRITE-0 and WRITE-1 because of the asymmetry in 

their operation. In general, direction of the current during WRITE -0 and READ 

operation are the same, while the magnitude of the current is fairly high (approximately 

10X) during the WRITE operation. 

 For READ operation, current (magnetic field) lower than critical current 

(magnetic field) is applied to MTJ to determine its resistance state. Low voltage (~0.1V) 

is applied to BL, and SL is set to ground. When the access transistor is turned on, a small 

current passes through MTJ whose value is detected based on a conventional voltage 

sensing or self-referencing schemes [85].  

During WRITE operation, BL and SL are charged to opposite values depending 

on bit value that is to be stored. During WRITE-0, BL is high and SL is set to zero, 

whereas during WRITE-1, BL is set to zero and SL is set to high. The asymmetric 

structure of WRITE-0 and WRITE-1 operations motivates SL line to be higher than 

nominal during WRITE-1 so that both operations generate comparable write-current. 

Such a circuit technique is elaborated in the next section.  



 

  132 

4.3. Errors in STT-MRAM 

4.3.1 Error Classification 

There are several factors that affect the failure in STT-RAM memories: access 

transistor manufacturing errors such as those due to random dopant fluctuations (RDF), 

channel length, and width modulations, geometric variations in MTJ such as area and 

thickness variation, and thermal fluctuations that are modeled by the initial magnetization 

angle variation [46]. Note that all these variations cause hard errors. 

Apart from errors that are caused by process variations, MTJ also suffers from 

time dependent reliability issues. MTJ structure consists of a very thin insulating layer 

(~1nm) and voltage across MTJ can be approximately 0.6V-1V. This results in a very 

high electric field across the thin insulator (~10MV/cm) which can cause time dependent 

dielectric breakdown (TDDB). With high scaling, the electric field across insulating layer 

rises, thereby increasing the possibility of TDDB.  

Next we consider the effect of key process variation factors on the error rate. The 

effect of RDF on threshold voltage is typically modeled with an additive iid Gaussian 

distribution. Variance of threshold voltage of a MOSFET is proportional to 

ʎ ͯ
   
ȟ where EOT is oxide thickness, and , and 7  are length and width of the 

transistor, respectively. For 32nm, ʎ  is approximately between 40 to 60mV [86]. We 

model CMOS channel length and width variation using i.i.d. (independent and identically 

distributed) Gaussian distribution with 5% variation. These variations induce change in 

the drive current of the transistor which results in increase on variation in both READ 

and WRITE operation. Variation in tunneling oxide thickness Ô  and surface area 



 

  133 

!  of MTJ are the main causes behind the random resistance change in MTJ material. 

Resistance of the MTJ is proportional to θ ρȾ! Å  [44]. In our simulations, 

we set the nominal values of (2 ) to 2.25K and (2 ) to 4.5K and modeled the variations 

using i.i.d. Gaussian distribution with 2% variance for thickness and 5% variance for the 

area [44]. Furthermore, initial magnetization angle of the MTJ affects the duration of the 

WRITE operation, since it induces extra resistance when the angle is not aligned properly 

at the initial state. Such variation is also modeled using i.i.d. Gaussian distribution with 

0.1 radian variance [82]. The nominal values and variance of the device parameters are 

listed in Table 4.1. We consider 40mV variation for RDF when width of 128nm which is 

equivalent to W/L=4 and scaled it for different W/L ratios.  

Table 4.1. Device Parameters of STT-MRAM. 

 Nominal Variance 

Transistor Channel Length(nm) 32 5% 

Transistor Channel Width (nm) 96,128,160 5% 

Transistor Threshold (RDF) 0.4V ʎ =40mV 
2  (Parallel) 2.25K ~6% 

2  (Anti-parallel ) 4.5K ~6% 

MTJ Initial Angle 0 0.1ʌ 

 

4.3.2 Errors in READ and WRITE Operations 

The reliability of an STT-RAM cell has been investigated by several researchers. 

While [82] studied the failure rate of a single STT-RAM cell using basic models for 

transistor and MTJ resistance, process variation effects such as RDF and geometric 

variation were considered in [46], [87]. In this section, we also present the effects of 

process variation and geometric variation. We add the variation effects to the nominal 



 

  134 

Hspice model of STT-RAM and use Monte Carlo simulations to generate the error rates 

caused by each variation.  

READ Operation: During READ operation, BL is set to 0.1V, SL is set to ground 

and the stored value is determined based on the current passing though the MTJ. Figure 

16 describes the READ current distributions for 32nm technology (nominal voltage is 

0.9V) for transistor W/L=4. Threshold current value is used to distinguish between 2 

states (READ-0 and READ-1). Typically there are two main types of failures that occur 

during the READ operation: READ disturb and false READ. READ disturb is the result 

of the value stored in the MTJ being flipped because of large current during READ. False 

READ occurs when current of parallel (anti-parallel states) crosses the threshold value of 

the anti-parallel (parallel) state as illustrated in Figure 4.2. In our analysis we find that the 

false READ errors are dominant during the READ operation, thus we focus on false 

READs in the error analysis.     

 

Figure 4.2.  Failures occur when the distributions of READ-0 and READ-1 current 

overlap. 

 

WRITE Operation: During WRITE 0, BL is high and SL is set to zero whereas 

during WRITE-1 BL is set to zero and SL is set to high. Figure 4.3 illustrates the 



 

  135 

WRITE-0 time distribution of a STT-RAM cell for access transistor size of W/L=4, 

BL=0.9V, SL=0. We observe that such a distribution has a long tail unlike a Gaussian 

distribution. During WRITE operation, failures occur when the distribution of WRITE 

latency crosses the predefined access time as illustrated in Figure 4.3. WRITE-1 is more 

challenging for an STT-RAM device due to the asymmetry of the WRITE operation. 

During WRITE-1, access transistor and MTJ pair behaves similar to a source follower 

which increases the voltage level at the source of the access transistor and reduces the 

driving WRITE current. Such a behavior increases the time required for a safe WRITE-1 

operation.  

 

Figure 4.3. Distribution of WRITE time during WRITE-0. Failure occurs when the 

WRITE-0 distribution crosses the threshold value.  

 

Table 4.2 shows the BER for READ and WRITE operations of STT-RAM at 

nominal conditions corresponding to 6 =0.9V, WRITE pulse =25ns, 6 =0.1V and 

access transistor size of W/L=4. WRITE-1 has very high BER compared to WRITE-0 



 

  136 

which has a BER of ρπ. The effect of such asymmetry in WRITE operation on system 

reliability has also been presented in [44], [87].  

 

Table 4.2. Bit error rates of a single STT-RAM cell. 

READ ( VREAD = 

0.1V) 
WRITE (pulse width = 25ns) 

0 1 0 1 

~ρπ ρͯπ τͯ³ρπ ~ω³ρπ 
 

 

The variation impacts of the different parameters are presented in Figure 4.4 for 

READ and WRITE operations. To generate these results, we changed each parameter one 

at a time and did Monte Carlo simulations to calculate the contribution of each variation 

on the overall error rate. We see that variation in access transistor size is very effective in 

shaping the overall reliability; it affects the READ operation by 37% and WRITE 

operation by 44% with the WRITE-0 and WRITE-1 having very similar values. The 

threshold voltage variation affects the WRITE operation more then the READ operation. 

Finally, the MTJ geometry variation is more important in determining the READ error 

rate as illustrated in Figure 4.4(b).   

 

                              (a)                                          (b) 

39%
8%

44%
9%

 

 

Transistor V
th

Transistor 

W/L

MTJ Geometry

MTJ IA
MTJ AI

20%

1%

37%

42%

Transistor V
th

Transistor 

W/L

MTJ Geometry



 

  137 

Figure 4.4. Effects of different variations on STT-MRAM. (a) WRITE operation. (b) 

READ operation. 

4.4. Related Work 

Recently, many studies have been performed to analyze the impacts of MTJ 

device parametric variability and the thermal fluctuation on the reliability of STT-RAM 

operations. A summary of the major MTJ parametric variations affecting the resistance 

switching was presented in [43] followed by design of ñ2T1Jò STT-RAM design for 

yield enhancement. A thermal noise model to evaluate the thermal fluctuations during the 

MTJ resistance switching process was presented in [88]. A quantitative statistical analysis 

on the combined impacts of both CMOS/MTJ device variations and thermal fluctuations 

was presented in [89]. A compact MTJ switching model that is derived from the MTJ 

macro-magnetic modeling was conducted in [90]. Compared to the previous work, the 

model in [90] costs less simulation time but it still uses complicated equations and 

iterations in SPICE simulation. In contrast, the method in [48] transfers the fundamental 

Landau-Lifshitz-Gilbert (LLG) equation into a passive RC network, in which all 

components are closed-form solutions of device geometry and material properties. The 

new SPICE model efficiently generates the transient behavior under all programming 

conditions. The physical basis of model derivation further helps gain design insights on 

STT-MRAM.  

To reduce the error rate in STT-MRAM, several techniques of device and 

peripheral circuit design are proposed. A methodology of optimizing STT-MRAM cell 

design was proposed in [91] to estimate and minimize the operation errors. In this method, 

given the MTJ device parameters, the NMOS transistor sizes are calculated based on the 



 

  138 

designed (nominal) values of both MTJ and CMOS parameters. Next, the device 

parameter samples are sent to the Monte-Carlo-based SPICE simulations to collect the 

WRITE currents samples through the MTJs. The final step takes into account the thermal 

fluctuation effects and the fluctuation of magnetic anisotropy to calculate the distribution 

of the MTJ switching time and the WRITE errors.  In [43], an architecture-aware cell 

sizing algorithm utilizes the tradeoff between READ failures and WRITE failures, that 

high WRITE current amplitude due to large current driver MOSFET results in low 

WRITE failure but the increased size of MOSFET causes disturbs in data sensing. Thus, 

this algorithm reduces READ failures and cell area at the expense of WRITE failures. 

4.5. Circuit Level Techniques for Reducing Error 

In this section we show how W/L sizing of access transistor, voltage boosting and 

pulse width adjustment can be used to improve the reliability of the STT-RAM cell. 

Access transistor sizing has been investigated in [82], [44], effect of process variation as 

well as WRITE pulse width has been studied in [44], [45], [87] and voltage boosting of 

word line has been considered in [44], [92]. In our work we also study READ reliability 

and investigate the effect of combination of WRITE pulse width and voltage boosting on 

the WRITE reliability. 

4.5.1 Effect of W/L of Access Transistor 

The width of the access transistor has two effects on the READ current 

distribution: it reduces the effect of RDF variation and improves the reliability by 

increasing the distance between the mean of the READ-0 and READ-1 distributions. 



 

  139 

Figure 4.5 illustrates this phenomenon by plotting the READ current distributions for 

three W/L ratios of the access transistor. Thus based on the W/L ratios we can choose the 

threshold value that maximizes the detection probability, which in return minimizes the 

BER. For instance, ×ÈÅÎ 7Ⱦ, σȟ"%2πȢχ ρπ  ; it reduces to "%2πȢςυ

ρπ  when the size increases to W/L5. Even though increasing W/L improves the 

reliability for the READ operation, it reduces the cell density and increases the power 

consumption.  

 

 

Figure 4.5. Distribution of READ current for different access transistor sizes. 

 

We also looked at the effect of W/L ratio on WRITE failure. When W/L ratio of 

the access transistor increases, its current driving capability is enhanced and the 

necessary time duration for a successful WRITE operation is reduced. Figure 4.6 

illustrates the BER vs. WRITE time duration of a WRITE-1 operation for three different 

values of W/L. 


