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Executive Summary 

Introduction – There is a critical need for life cycle assessment (LCA) during the formative stages of technology 

development, so that the systemic environmental consequences of new technologies may be identified and mitigated 

early in product development cycles.  For example, several studies have called for the application of LCA to 

nanotechnology.  However, LCA typically relies on detailed inventory and performance data collected from existing 

industries at commercial scales.  In the case of nanotechnology, collecting manufacturing and use-phase LCA 

inventory data is problematic, both because nanotechnologies are proprietary and because the energy and material 

flows studied at the laboratory-scale will likely change as the technology matures.  This necessitates the 

development of anticipatory LCA methods that can be used to explore potential environmental impacts of 

developing nanotechnologies before they exist at scale. 

Methods – Anticipatory LCA seeks to overcome the paucity of data through scenario development and 

thermodynamic bounding analyses.  Critical components of anticipatory LCA include: 1) laboratory-scale inventory 

data collection for nano-manufacturing processes, and preliminary performance evaluation, 2) thermodynamic 

modeling of manufacturing processes and developing scenarios of efficiency gains informed by analogous material 

processing industries, and 3) use-phase bounding to report inventory data in a functional unit descriptive of 

performance.  Together these analyses may call attention to environmentally problematic processes or 

nanotechnologies before significant investments in R&D and infrastructure contribute to technology lock in.  The 

following case study applies these components of anticipatory LCA to single wall carbon nanotube (SWCNT) 

manufacturing processes, compares the rapid improvements in SWCNT manufacturing to historic reductions in the 

embodied energy of aluminum, and discusses the use of SWCNTs as free-standing anodes in advanced lithium ion 

batteries.  

Case Study – SWCNTs can be synthesized through at least four different pathways: chemical vapor deposition 

(CVD), high pressure carbon monoxide (HiPCO), arc discharge, and laser vaporization.  HiPCO demonstrates 

comparatively lower environmental burdens because it is a continuous flow process with recycled exhaust gasses, 

and thus has potential for scale-up to produce kilogram quantities of SWCNT.  We model the degree of perfection (a 

second law measure of efficiency) of the HiPCO process, and develop scenarios for future improvements which 
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represent improvements in critical process parameters.  Finally, we convert the energy requirements of each scenario 

into a functional unit of kWh battery storage capacity in a bounding-type analysis based upon existing 

measurements and theoretical limits.  Assuming complementary advances in cathode technology and optimized 

battery geometry, SWCNT-enabled lithium ion batteries might store between 1.44 and 3.96 Wh / gSWCNT.  

Combining the outputs of the thermodynamic model with these two limiting-case conversion factors provides a 

range of energy requirements per kWh storage capacity. 

Results and Conclusion – If the energy requirements of SWCNT manufacturing do not decrease, SWCNT anode 

batteries will require between 60 MWh of electricity per kWh storage capacity in the battery (the battery performs at 

its theoretical limit) and 160 MWh / kWh storage capacity (low performance battery).  These values represent the 

energy requirements for SWCNT-anode manufacturing alone, and do not account for the remainder of battery 

manufacturing processes.  This is more than two orders of magnitude greater than existing lithium ion battery 

manufacturing processes.  Thus, research improving the functionality of SWCNT anodes alone is unlikely to result 

in an environmentally viable technology.  However, research efforts focused on decreasing the energy intensity of 

SWCNT manufacturing processes may result in technologies with practical potential to generate environmental 

benefits.  The most ambitious scenario of manufacturing efficiency gains yields values near .8 MWh per kWh 

storage capacity.  Our results suggest that improving the yield of SWCNT relative to CO_as C input (called the 

synthesis reaction yield) is the most promising pathway for environmental improvements in the HiPCO process.  

The process SRY may be increased through recycling of exhaust gasses and further optimization of catalyst-

feedstock interaction.  Thus, anticipatory LCA may suggest alternative research agenda that may contribute to the 

development of more environmentally beneficial nanotechnologies.   
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Introduction 

Until recently, the environmental impacts of developing technologies were neither explored nor regulated until after 

commercialization.  (One exception may be recent environmental assessments of ethanol and biofuel production, see 

for example Rogers and Seager (2009).)  Thus, technological innovation has been disconnected from environmental 

assessment and regulation (Dewick, Green et al. 2004; von Gleich, Steinfeldt et al. 2008), which has positioned 

environmental governance as retrospective and reactive (Davies 2009).  Nonetheless, there is a growing realization 

that environmental intervention at the nascent stages of technology development may be more effective.  Therefore, 

there is a critical need to transcend retrospective models of environmental assessment and regulation by applying 

life cycle assessment (LCA) to technologies at these early stages (Fleischer and Grunwald 2008; Meyer, Curran et 

al. 2011), such that life cycle environmental tradeoffs can be explored in modeling scenarios before significant 

investments in infrastructure create technological lock-in or result in stranded costs. 

I. Towards Anticipatory Life Cycle Assessment  

LCA is increasingly recognized as the appropriate framework to understand the environmental impacts of processes, 

technologies, and industries (Curran 2004; Bauer, Buchgeister et al. 2008; Eason 2011) because it accounts for 

shifting of environmental burden from one life cycle phase to another (e.g., increased battery lifetime at the cost of 

increased energy investments in manufacturing).  However, existing LCA methods are insufficient for developing 

technologies (Wiek, Lang et al. 2008; Meyer, Curran et al. 2009).  Real-time assessment and governance of 

technology necessitates the development of novel anticipatory LCA methods that can be used to quantitatively 

explore environmental impact scenarios, and relate findings in a decision-oriented manner (Canis, Linkov et al. 

2010; Linkov, Bates et al. 2011).   

II. LCA of Novel Nanotechnologies 

A suite of examples illustrate the need for, and challenges that impede, the development of anticipatory LCA 

methods for nano-enabled energy technologies.  A number of experts, including the United States Environmental 

Protection Agency (USEPA) and Woodrow Wilson Institute for Scholars have called for the application of LCA to 

nanotechnology (Klopffer 2007; Savage 2008; Şengül, Theis et al. 2008; Theis, Bakshi et al. 2011).  In practice, this 

is problematic for several reasons: 



4 
 

 Uncertainty regarding the human and ecological health impacts of nanomaterials (Oberdörster, Oberdörster 

et al. 2005; Wiesner, Lowry et al. 2006; Bell 2007; Oberdörster, Stone et al. 2007; Stefani, Paula et al. 

2011; Wiesner and Bottero 2011), 

 High variability between engineered nanomaterials with the same chemical composition (Landi, Ruf et al. 

2005; Powers, Palazuelos et al. 2007), 

 Uncertainty in extrapolating laboratory-scale inventory data to commercial scales (Seager and Linkov 

2008; Gutowski 2010; Gutowski, Liow et al. 2010), and   

 Selecting a use phase-relevant functional unit that captures the potential benefits of engineered 

nanomaterials (Wender and Seager 2011).   

Because of these challenges there are, to date, no complete LCAs (e.g., cradle-to-cradle) of novel nanoproducts, 

although cradle-to-gate analyses of nanomaterials.  The ecotoxicity of specific nanomaterials is relatively the most 

studied (Gavankar, Suh et al. 2012), although Eckelman, Mauter et al. (2012) suggest that the environmental impact 

of manufacturing and upstream processes may outweigh downstream, direct exposure impacts.  Thus, cradle-to-gate 

analyses of nanomaterials have called attention the energy intensity of nano-manufacturing processes (Healy, 

Dahlben et al. 2008; Khanna, Bakshi et al. 2008; Ganter, Seager et al. 2009; Anctil, Babbitt et al. 2011; Grubb and 

Bakshi 2011), but do not account for the potential benefits provided by nanomaterials in the use phase.  Few LCAs 

have overcome use phase uncertainty in selecting a relevant functional unit – exceptions are Walser, Demou et al. 

(2011), Reijnders (2010), Lloyd and Lave (2003), yet these analyses do not incorporate recent human health and 

toxicology research (Plata, Hart et al. 2009).  Finally, the environmental tradeoffs of end-of-life recycling and 

processing of nanomaterials (Olapiriyakul and Caudill 2008) are explored independent of research into exposure 

pathways (Benn and Westerhoff 2008; Köhler, Som et al. 2008; Maynard 2009), which in turn is uninformed by 

research into social and market acceptance of nano-enabled technologies (Scheufele, Corley et al. 2007; Siegrist, 

Cousin et al. 2007; Siegrist, Wiek et al. 2007).  Table 1 organizes the existing science, and shows how the 

fragmented efforts that inform different aspects of nano-LCA have yet to be integrated in a comprehensive whole. 
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Table 1: Relation of Nanostructured Material and Product Research Needs to LCA 

  L I F E - C Y C L E   S T A G E 

  Acquisition 

Purification & 

Manufacture Use 

End-of-life 

Disposition 

 

Material   

abundance & 

acquisition 

scarcity & 

criticality of 

materials 

[46] 

by-product & 

waste minimization 
risk assessment for emissions inventory & 

characterization, including source term 

characterization, fate & transport, 

exposure and dose-response assessment 

[39, 40, 50] Bioavailability & 

Toxicity 
  

Synthesis pathways 
energy & material intensity 

[11, 25, 32-38, 45] 
  

Life-cycle 

characteristics 
 

technology 

comparison 

[30, 31] 

cost, functionality 

& efficiency 

[28, 29] 

persistence, 

mobility, 

bioaccumulation 

[19-23] 

Social context 
geopolitical 

sensitivities 

worker safety 

[49] 

market acceptance 

[43, 44] 

disposal & take-

back regulations 

[41, 42] 

More importantly, Table 1 suggests that anticipatory LCA requires knowledge from multiple fields of study.  

Different research questions and investigative methods are required at each life cycle stage, and LCA of 

nanotechnology cannot proceed without parallel research in prerequisite specialty areas.  That is, anticipatory LCA 

must incorporate social science, materials science, environmental science, and sustainability science perspectives in 

order to be applicable across all of Table 1.   

III. Scale, LCA, and Thermodynamic Limits 

Anticipatory LCA confronts the problem of data scarcity through a combination of scenario development and 

thermodynamic analysis of manufacturing processes and technology performance.  Specifically, by coupling 

laboratory-scale inventory data with simplified technology performance modeling and projecting returns to scale, it 

is possible to provide upper and lower boundaries on environmental indicators of interest (e.g., embodied energy) 

for a specific technology.  Three critical methodological components of anticipatory LCA are: 
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1.  Creating laboratory-scale material and energy inventories, and determination of the laboratory or pilot-scale 

thermodynamic degree of perfection.  Those processes that are far from thermodynamic perfection might 

be expected to improve more quickly than those that are already approaching practical thermodynamic 

limitations (Gutowski 2010; Gutowski, Liow et al. 2010). 

2.  Analogous experience curve modeling.  It is well understood that high technology industries improve cost, 

material and energetic efficiencies as total production knowledge accumulates.  Analysis of experience 

curve patterns from more mature industries (e.g., aluminum) may result in estimates of efficiency gains that 

accrue as emerging technologies are scaled up (McDonald and Schrattenholzer 2001; Yu, van Sark et al. 

2011). 

3.  Calculating upper and lower boundaries to use-phase performance based on theoretical limits and existing 

laboratory measurements (Wender and Seager 2011). 

In situations of high uncertainty (e.g., nano-enabled energy technologies) this analysis can be used to develop 

scenarios of environmental burden, and may call attention to environmentally problematic processes and 

technologies.  Furthermore, by providing estimates of manufacturing and use-phase efficiency respectively, these 

analyses can lead to prioritization of research needs that will lead to the most meaningful environmental 

improvements.  For example, an environmental agenda might call attention to research needs in manufacturing, 

rather than in product use-phase performance.  These analyses characterize developing products cradle-to-use, and 

model results are ultimately incorporated into existing LCA tools (e.g., Simapro and EIO databases) to broaden 

system boundaries and account for supply chain impacts, as shown in figure 1.   
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Figure 1: Cradle-to-use Components of Anticipatory LCA for Developing Nanotechnologies 

The anticipatory LCA framework is iterative – initially a bounding-type analysis but moving towards forecasting 

LCA as data improve.  Furthermore, the proposed cradle-to-use analyses described above may be expanded to 

include end of life impacts with further research (Schauerman, Ganter et al. 2012).  More importantly, 

thermodynamic bounding analyses of technologies in their nascent stages may call attention to life cycle phases with 

the most potential for environmental improvement.  Thus, anticipatory LCA may reorient a scientific research 

agenda towards pathways with decreased environmental burden.  The following case study applies these 

components of anticipatory LCA to single wall carbon nanotube (SWCNT) manufacturing processes, compares the 

rapid improvements in SWCNT manufacturing to analogous material processing industries, and discusses the use of 

SWCNTs as an active anode material in advanced lithium ion batteries.     

Case Study: Single Wall Carbon Nanotubes for Lithium ion Batteries 

A major thrust of battery research is to increase the energy storage density of rechargeable batteries.  This is 

motivated in part by consumer preference for lightweight electronics, but is increasingly important as electric and 

hybrid electric vehicles are implemented on larger scales.  Recently, the energy density of batteries has increased by 

a factor of five—from lead acid batteries with a mass-based energy density up to 50 Wh/kg to lithium polymer 
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batteries approaching 250 Wh/kg.  Lithium ion batteries have emerged as the preferred chemistry because of their 

comparatively high energy densities per unit mass (Wilburn 2008).  Further improvements will depend upon 

increasingly sophisticated materials and manufacturing techniques, and engineered nanomaterials are appealing 

because of their large surface area and unique electrical properties.  Specifically, single wall carbon nanotubes 

(SWCNTs) can store lithium ions, collect charge carriers, and conduct charge to external circuits (Landi, Ganter et 

al. 2008; Landi, Cress et al. 2011).  SWCNT anodes may eliminate the need for charge collecting metal foil used in 

conventional lithium ion anodes, thus reducing battery weight and increasing energy storage density.  The potential 

gains in use phase performance in SWCNT-enabled lithium ion batteries could justify increased energy investments 

in SWCNT manufacturing.  However, there is no data available describing commercial scale manufacturing of 

SWCNT anodes, and only preliminary laboratory-scale data describing their use phase performance potential.  Thus, 

the systemic environmental consequences of SWCNT-enabled lithium ion batteries are inherently unclear, and 

necessitate anticipatory LCA methods to quantitatively explore energy tradeoffs between the manufacturing and use 

phases.  Specifically, the aforementioned analyses can provide insights into future developments in nano-

manufacturing processes (e.g., potential sources of efficiency gains) coupled with comprehensive use-phase 

modeling (e.g., from present capabilities to thermodynamic limits) to evaluate the promise of future 

nanotechnologies from cradle-to-use.  Ultimately, these results can be incorporated into existing LCA tools to 

broaden system boundaries and include potential supply chain impacts of future technologies. 

I. SWCNT Manufacturing from an Environmental Perspective 

SWCNTs can be synthesized through at least four different pathways: chemical vapor deposition (CVD), high 

pressure carbon monoxide (HiPCO), arc discharge, and laser vaporization.  Early environmental assessments have 

called attention to the massive electricity consumption, high-purity input materials requirements, and low synthesis 

yields common to these processes (Healy, Dahlben et al. 2008; Ganter, Seager et al. 2009; Canis, Linkov et al. 

2010).  The majority of environmental impact is attributable to electricity consumption during SWCNT synthesis 

and to a lesser extent purification processes, while the most significant impact categories are climate change, 

airborne inorganics, and acidification.  HiPCO demonstrates the comparatively lower environmental burdens 

because it is a continuous flow process with recycled exhaust gasses, and thus has potential for scale-up to produce 

kilogram quantities of SWCNT (Aditi, Helen et al. 2008).   
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II. Mechanisms of the HiPCO Process 

The HiPCO process is a specialized form of chemical vapor deposition through which SWCNTs are produced at a 

high rate from a carbon monoxide (CO) feedstock (Nikolaev, Bronikowski et al. 1999; Richard E. Smalley 2004).  

Catalytic iron nanoparticles, formed in situ by the thermal decomposition of Fe(CO)5 and aggregation of gas-phase 

Fe atoms, provide preferential sites for CO disproportionation, shown below in (1).  The formation of solid carbon 

from CO gas in disproportionation, promotes formation of SWCNT on the surface of the catalyst via the Yarmulke 

mechanism (Hafner, Bronikowski et al. 1998; Moisala, Nasibulin et al. 2006).  Briefly, a hemispherical carbon cap 

forms on appropriately sized particles, and the cap is pushed away from the catalytic particle by the addition of 

carbon atoms until the particle becomes too large and overcoats with amorphous carbon, or too small and evaporates 

(Bladh, Falk et al. 2000; Bronikowski, Willis et al. 2001).   

2CO (g)    ↔   CNT (s)  +  CO2 (g)  (1) 

               ∆   275.1 [kJ/mol-CO]         469.62 [kJ/mol-C]               19.87 [kJ/mol-CO2] 

Listed below reaction (1) are the standard exergies of formation of the reactants and products.  The exergy of 

formation represents the useful energy input to create the species from the environmental ‘dead state’, and is one 

component of a second law analysis of the HiPCO process.  Second law analyses are preferred to first law analyses 

because the second law accounts for energy quality (i.e., how much useful work can be derived from it) as opposed 

to total quantity (Dewulf, Van Langenhove et al. 2008).  Overall, the reaction releases 60.7 kJ/mol-C (or 5.06 kJ/g-

SWCNT) at standard conditions (Szargut, Morris et al. 1988; Gutowski, Liow et al. 2010) and consequently is 

exothermic and spontaneous.  However, the reaction rate is significant only at temp  C 

(Renshaw, Roscoe et al. 1970) and increases with pressure, thus the HiPCO process requires -

 C) and pressure (30-50 atm) conditions to drive the reaction forward.  Reaching and maintaining these 

conditions (i.e., changing the physical exergy of the CO gas stream) requires exergy inputs, which when combined 

with the chemical exergy input in the form of CO, is currently orders of magnitude greater than energy released in 

disproportionation.   

III. Degree of Perfection of the HiPCO Process 

The degree of perfection provides a measure of the second law efficiency of manufacturing processes, and is defined 

as the ratio of the chemical exergy of the product(s) at standard conditions to the sum of all exergy input (Szargut 
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and Morris 1987).  Assuming the kinetic and potential exergy of the CO gas stream is negligible, the degree of 

perfection can be estimated as, 

 (2) 

where the standard chemical exergy of SWCNT (bch, SWCNT) is 469.62 kJ/mol-SWCNT, as shown in Reaction One.  

Assuming ideal gas behavior, the minimum physical exergy (bph

 C, ~30 atm) is given by (3), 

(Szargut, Morris et al. 1988). 

  (3) 

The total input exergy is then given by the sum of physical inputs and the standard exergy of CO feedstock, then 

multiplied by the mole ratio of CO to SWCNT (given by the inverse of the synthesis reaction yield, SRY) to result 

in the total input exergy per mole of SWCNT produced.  When the HiPCO process was first reported in 1999, inputs 

were greater than 600,000 grams of CO per gram of SWCNT (Nikolaev, Bronikowski et al. 1999), and by 2004 

were on the order of tens of thousands of grams CO per gram SWCNT (Richard E. Smalley 2004).  These historic 

improvements in the degree of perfection are shown in Figure 2

 C and 30 atm, and three scenarios of process improvement into the near future. 



11 
 

 

Figure 2: Historic Improvements in the Degree of Perfection of the HiPCO Process, and Three Scenarios of 

Future Improvement 

Scenario One assumes no process improvement from values reported in the 2004 pattent, and thus provides the 

upper bound of manufacturing exergy requirements.  Scenario Two represents ideal bph, but no improvements in 

SRY from 2004 values.  It is noteworthy that, because the reported SRY values are on the order of 10
-5

, reductions 

in bph do not result in improved DoP.  Conversely, Scenario Three represents the stoichiometric ideal SRY, but 

assumes no reductions in bph from 2004 values.  In this scenario, the DoP improves dramatically (despite fixed bph) 

because the SRY dominates process inefficiency at this point.  The ideal (although never attainable) manufacturing 

process has a degree of perfection of unity, and smaller values indicate increased potential for efficiency gains.  The 

degree of perfection for SWCNT manufacturing processes are on the order of 10
-4

 which indicates significant room 

for improvement.  By comparison, electric induction melting processes have a degree of perfection on the order of 

10
-1

 (~.7), and are thereby approaching their second law limit (Gutowski, Branham et al. 2009).   

IV. Analogous Experience Curve Modeling 
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It is well understood that the thermodynamic and economic efficiency of material manufacturing processes improve 

with increased experience and scale.  Similar to SWCNT manufacturing processes, at one time the energetic 

demands of aluminum processing were prohibitive of large scale production and application.  Nonetheless, the 

discovery and scale-up of the Hall-Heroult electrolytic reduction process prompted significant reductions in the 

embodied energy of aluminum.  Specifically, as the Hall-Heroult process matured (i.e., increased experience and 

increased in scale), the specific energy demands of aluminum production asymptotically decreased towards the 

theoretical minimum (Haupin 1986), as shown in Figure 3 (top).  The rapid improvements in thermodynamic 

efficiency of the Hall-Heroult process are analogous to early improvements in SWCNT manufacturing via the 

HiPCO process.  In the time between first reporting of the HiPCO process in 1999 and patenting in 2004, the 

thermal exergy (which is the sum of the physical and chemical exergy described above) required to produce an 

equivalent mass of SWCNT decreased by more than an order of magnitude, as shown in Figure 3 (bottom).   
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Figure 3: Historic Reductions in Aluminum Process Energy and Analogous Improvements in the HiPCO 

Process 
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The significant improvements assumed in Scenario Three are informed by inspection of historic thermodynamic 

experience curves.  Furthermore, the rapid gains in manufacturing efficiency demonstrated by both processes 

illustrate the challenge of early environmental assessment of rapidly developing technologies – LCA is trying to hit 

a moving target.  Nonetheless, there are several analogous historical examples of advances in material processing 

that enabled the development and growth of transformational industries.  For example, improvements in aluminum 

processing enabled the aerospace industry and advances in silicon manufacturing enabled semiconductors and 

resulting information and communication technologies.  By analogy, we can reason that sufficient improvements in 

SWCNT manufacturing efficiency may result in establishment of a new, nano-enabled, technology revolution.  

However, the next section will reveal that LCA of SWCNT processes as they exist now holds little potential for 

environmental benefits. 

V. Use Phase Performance Bounding of SWCNT Anode Lithium ion Batteries 

Half-cell testing of SWCNT anodes reveals a reversible capacity of 400 mAh / gSWCNT, compared to a theoretical 

limiting capacity of 1100 mAh / gSWCNT (Landi, Ganter et al. 2008; Landi, Cress et al. 2011).  Both values 

represent a significant improvement over traditional lithium ion battery anodes (made of mesoporus carbon beads) 

which provide a reusable capacity around 150 mAh / gC.  The specific energy density of the battery is computed as 

the product of specific capacity and cell voltage, nominally 3.6 volts for LiCoO2-carbon battery cells (Linden 1984), 

which is a generous assumption as early research indicates decreased voltage profiles.  Assuming complementary 

advances in cathode technology and optimized battery geometry, SWCNT anode lithium ion batteries might store 

between 1.44 and 3.96 Wh / gSWCNT.  Using these two limiting cases to provide upper and lower boundaries on 

battery performance, the thermal exergy scenarios output by the model are presented in a functional unit 

representative of battery performance, specifically kWh storage capacity, as shown in Figure 4. 
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Figure 4: Thermal Exergy Requirements per kWh of Storage Capacity of SWCNT Anode Lithium ion 

Batteries, for SWCNT Synthesis via HiPCO According to Two Scenarios Discussed Above 

The single line depicting historical thermal exergies splits into two – representing the high performance battery 

(lower line) and low performance battery (upper line).  If no improvements in the manufacturing efficiency are 

realized, the eventual embodied exergy of SWCNT anodes will lie between 60 and 160 MWh / kWh storage 

capacity (the upper purple region).  This represents the exergy to produce the anode alone, and does not account for 

the remainder of the battery manufacturing processes.  The yellow shaded region indicates the range of likely values 

if the HiPCO increases material efficiency as described in Scenario Three.   

VI. Discussion and New Directions 

A recent LCA of conventional-carbon anode lithium ion batteries reports energy investments of .47 MWh per kWh 

storage capacity (Samaras and Meisterling 2008) – over two orders of magnitude less than SWCNT anodes alone.  

Thus, research improving the functionality of SWCNT anodes alone is unlikely to result in an environmentally 

viable technology.  However, research efforts focused on decreasing the energy intensity of SWCNT manufacturing 

processes, may result in technologies with practical potential to generate environmental benefits.   Thus, establishing 
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upper and lower boundaries to use phase performance and combining these limits with laboratory-scale 

manufacturing data can be used to quantitatively explore tradeoffs between improved technological performance 

associated with use of engineered nanomaterials and the significant energy investments inherent in nanoscale 

engineering.   

One pathway to reduce the environmental burden of carbon nanotube manufacturing processes is to improve the 

synthesis reaction yield (SRY) of nanomanufacturing processes.   Typical SRY values are less than five percent for 

three of the four established SWCNT synthesis pathways discussed above.   However, a recent study of SRY in laser 

vaporization in batch processes demonstrated that use of nano-scale catalysts results in yields closer to 35% 

(Schauerman, Alvarenga et al. 2009).  Further improvements in the life-cycle environmental performance of 

SWCNT manufacturing processes can likely be achieved through recycling of inert gasses and catalysts, as well 

continuous-flow process optimization, and returns to scale.    

Conclusion 

Research and development of nano-enabled energy technologies is inherently uncertain, and the tools necessary to 

conduct environmental assessment, specifically LCA, under such uncertainty have lagged behind nanotechnology 

development.  Paradoxically, current approaches to LCA are least able to inform environmental understanding in the 

early stages of technology development when LCA could most reduce the eventual systemic environmental burdens 

of the technology.  This necessitates the development of anticipatory LCA methods, which employ thermodynamic 

analysis as a guidepost for understanding both the limits of manufacturing improvements and use phases 

performance, thereby replacing a complete lack of data with potential scenarios.  Ultimately, an anticipatory analysis 

can contribute to reorientation of laboratory research agenda towards pathways with decreased environmental 

burden.  This chapter presented an example demonstrating the limits of a research agenda that focuses on improving 

use-phase performance of SWCNT-enabled lithium ion batteries alone as being less valuable than research into 

decreasing energy requirements of SWCNT manufacturing processes. 

  



17 
 

Supporting Information 

The ‘high pressure carbon monoxide’ (HiPCO) process is a method for producing single wall carbon nanotubes 

(SWCNTs) via the disproportionation of carbon monoxide (CO), shown below in reaction 1 (Szargut and Morris 

1987; Gutowski, Liow et al. 2010). 

2CO (g)   ↔  CNT (s) + CO2 (g)  (1) 

∆     275.1 [kJ/mol-CO]    469.62 [kJ/mol-C]    19.87 [kJ/mol-CO2] 

C) and thus requires 

high pressures (≈30 atm) in order to drive the reaction forward.  The operating conditions and critical parameters 

(e.g., reactant gas flow rate, product yield rate) of the HiPCO method, representing three distinct points in process 

development (Nikolaev, Bronikowski et al. 1999; Bronikowski, Willis et al. 2001; Richard E. Smalley 2004), are 

summarized below in table 1. 

Table 1.  Process Parameters and Data for SWCNT Formation via the HiPCO Process 

 

Publication 

CO Flow Rate 

 

[mol CO/sec] 

SWCNT Yield Rate  

 

[mol CNT /sec] 

CO/SWCNT mol ratio 

 

[mol CO / mol SWCNT] 

CO/SWCNT ratio 

 

[g CO/g SWCNT] 

Nikolaev et al, 

1999 

 

.0037 

 

1.4 x 10
-8 

 

270,000 

 

630,000 

Bronikowski et al, 

2001 

 

.21 

 

4.5 x 10
-6 

 

47,143 

 

110,000 

Smalley et al, 

2004 

 

.0074 

 

2.0 x 10
-7 

 

36,429 

 

85,000 

Ideal HiPCO N/A N/A 2 4.66 

Assuming the kinetic and potential exergy flows are negligible, all exergy flows through the system are either 

physical exergy (bph – the exergy associated with changes of state) or chemical exergy (bch – the exergy contained in 

the material feedstocks).  The minimum physical exergy required to reach operating conditions of an idealized 

HiPCO processes, consisting only of heating and pressurizing CO gas, is given by (Szargut, Morris et al. 1988) 

  (2) 
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Where P0 is 1 atm, P is 30 atm, T0 is 373 K, T is 1373 K, cp for CO is assumed to a be constant 1.04 kJ/kg_CO  K, 

and the specific gas constant for CO is .2968 kJ/kg_CO K.  The chemical exergy carried in the reactants is given by 

the exergy of formation of CO (275.1 kJ/mol-CO as shown in equation 1 above) multiplied by the molar ratio of CO 

to SWCNT (called the synthesis reaction yield, SRY) (Healy, Dahlben et al. 2008).  The sum of the physical and 

chemical exergy (called the thermal exergy, bth) is used to calculate of the degree of perfection (DoP) of the HiPCO 

method, which provides a measure of processes’ the second-law efficiency, and is given by 

 (3) 

Where the chemical exergy of SWCNT is 469.62 kJ/mol_C as shown in equation 1 above.  Historical improvements 

(1999 to 2004) in the DoP of SWCNT manufacturing via the HiPCO process are shown in figure 1 below, along 

with three scenarios of improvement (2004 – 2016) based on gains in either the SRY or reductions in bph. 
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